Natural Language Processing

Info 159/259

Many slides & instruction ideas borrowed from:
David Bamman, Mohit lyyer & Greg Durrett



Logistics

Quiz 3 & HW2
APO is due this Friday Feb 16
Exam 1 is next Wednesday Feb 21
Homework 3 will be out by Wednesday
» Will be due Thursday Feb 22.
Quiz 4 will be out this Thursday (due next Sunday Feb 18)

Today: Neural LM



Language Model

Language modeling is the task of estimating



L anguage Model

P(w):P(wl,...,wn)

P(“Call me Ishmael”) =
P(wi = “call”, we = “me”, wa = “Ishmael”)

2, Pw=1 0< Plw) <1

weVt = >~

over all sequence lengths!



Language Model

* Language modeling is the task of estimating

* Why is this hard?
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Chain rule (of probability)



Chain rule (of probability)

P(It") P(wr)

P(‘was” | “It") P(ws | wy)
P(ws | wy,ws)
P(wy | wy,ws,ws3)

\4

P(“times” | “It was the best of times, it was the worst of” )



Markov assumption

first-order

second-order

P(ZL',,, ’ L1, - - .337;_1) ~ P(xz ‘ xi_l)

P(CBZ | L1y . .xi_l) ~ P(wz | .737;_2,337;_1)



Ngram Models

n
bigram model HP(wZ | wi—l) X P(STOP | wn)
(first-order markov) .
7
n
trigram model HP wi | Wi o ws
(second-order markov) ( ¢ | 1—2, W 1)

1

xP(STOP | wp—1,wn)



“It was the best of
times, it was the
worst of times”

P(It| START,, START,)
P(was | START, It)

P(the | It,was)

P(times | worst,of)

P(STOP | of,times)



Estimation of N-gram model

HP(wi) Hp(wi | wi—1) HP(’U% | wi—2, wi—1)
xP(STOP) xP(STOP | w,) X P(STOP | wy_1,wy,)
Maximum likelihood estimate
c(w;) c(w;—1,w;) c(w;—2, w;—1,w;)

N C(wi—l) C(wi—27wi—1)



Language Model

* We can use multiclass logistic regression for language modeling by
treating the vocabulary as the output space

y=V



The United States Senate opens its second impeachment trial of former
President Donald J.

feature classes example
ngrams (Wi-1, Wi-2:Wi-1, Wi-3:Wi-1) wio="donald”, wi.1="}.”
gappy ngrams wi="impeachment” and wo="donald”

wi-1 is capitalized and w; is
capitalized
wi-1 in list of names and wi in list of
names

spelling, capitalization

class/gazetteer membership
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Tradeoftfs

* Richer representations = more parameters, higher likelihood of overfitting

* Much slower to train than estimating the parameters of a classical model

exp(x' B,)

PY=y|X=x;p6) = Zy'ey exp(x'B,)




Neural LM

Simple feed-forward multilayer perceptron (e.g., one hidden layer)

input x = vector concatenation of a conditioning context of fixed size k

Bengio et al. 2003



X = [v(wq);..
w1 = tried
w2 = to

W3 = prepare
W4 = residents

S v(wy)]

V(W)

V(wa)

: distributed
one-hot encoding representation

Bengio et al. 2003

v(w1)

V(wa)

V(w3)

V(Wa)
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W1 c RKDXH
b1 € ]RH

W2 c RHXV
bg € RV

h = Q(XW1 —I—b1)

s V(W]

Bengio et al. 2003

y = softmax(hW» + b»)



Neural LM

conditioning context

tried to prepare residents for the hardships of recovery from the



Recurrent neural network

* Feed Forward NN has the limits of context length.

* RNN allow arbitarily-sized conditioning contexts; condition on the



Recurrent neural network

i y2 Y3 Y4 Y5
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Recurrent neural network

* Each time step has two inputs: 1
* X (the observation at time T
step i); one-hot vector, S0 { RO s1

feature vector or

* si1 (the output of the

previous state); base case: X1
so = 0 vector



Recurrent neural network

— . Q. y1
Si = R(Xla Si—1 )
R computes the output state as a T
function of the current input and - .
previous state S
SO‘>‘ R, O —1>

[ ‘ J
yi = 0(s))
: X1
O computes the output as a function of
the current output state




“Simple” RNN

Si = R(Xi, Si—1) = g(Sj—1W° + x;W* + b)

[TTTT]
We ¢ R<H f
Different weight vectors W transform the T
previous state and current input before WX e RPxH , 1
combining y 80~>‘ RO |
X1

Elman 1990, Mikolov 2012



RNN LM

* The output state sjis an H-

dimensional real vector; we can EEEEE
transfer that into a probability by T
passing it through an additional linear - —
transformation followed by a softmax S"H‘L kO Jﬂl E

y; = O(s;) = softmax(s;W?° + b°) ARENERE




Training

e Given this definition of an RNN:;

RNNs

S; — R(ZIJZ, Si—l) = g(SZ'_lws + ZIIZW‘B + b)
y; = O(s;) = softmax(s; W + b°)

* We have five sets of parameters to learn:

We W= W°. b, b°



Training RNNs

1 y2 y3 y4 ys
Soﬁ‘ Ro |°% RO |2 RO % RO % RO ‘Hss
X1 9} X3 X4 X5

* At each time step, we make a prediction and incur a l0ss; we know the
true v (the word we see in that position)



8L(0)y1 aL(Q)y’z aL(Q)ys 8[’(9)1/4 8L(0)y5
ows ows ow's ows ow's

we tried to prepare residents
y1 ¥y2 ¥3 Y4 ¥s

soﬁ‘ RO % RO % RO |3 RO ﬂ{ R,0 ‘—»ss
X1 X) X3 X4 X5

* Training here is standard backpropagation, taking the derivative of the loss
we incur at step t with respect to the parameters we want to update



we tried to prepare residents

y1 y2 y3 Y4 ys
So—»‘ R0 Ll{ RO % RO }ﬂ» R0 i{ R0 ‘—»ss
X1 X) X3 X4 X5

o
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A& N U s @
| | !
=
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S w S © m
N NUNN

Each state i encodes information seen until time /
and its structure is optimized to predict the next word



Character LM

* Vocabulary V is a finite set of discrete

* When the output space is small, you're putting a lot of the burden on the
structure of the model

* Encode long-range dependencies (suffixes depend on prefixes, word
boundaries etc.)



Character LM

static int indicate_policy(void)
{

int error;

if (fd == MARN EPT) {

if (ss->segment < mem_ total)
unblock graph_and_set blocked();

else
ret = 1;
goto bail;

}
segaddr = in_SB(in.addr);
selector = seg / 16;

setup_works = true;



Character LM

\begin{proof}

We may assume that $\mathcal{I}$ is an abelian sheaf on $\mathcal{C}S$.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$

is an injective and let $\mathfrak g$ be an abelian sheaf on $X$.

Let $\mathcal{F}$ be a fibered complex. Let $\mathcal{F}$ be a category.
\begin{enumerate}

\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}

Let $\mathcal{F}$ be an abelian quasi-coherent sheaf on $\mathcal{C}$.
Let $\mathcal{F}$ be a coherent $\mathcal{O} X$-module. Then
$\mathcal{F}$ is an abelian catenary over $\mathcal{C}$.

\item The following are equivalent

\begin{enumerate}

\item $\mathcal{F}$ is an $\mathcal{O}_ X$-module.

\end{lemma}



Character LM

PANDARUS :

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.



RNN Tradeoffs

* Very expensive to train (especially for large vocabulary)

* Backpropagation through long histories leads to vanishing gradients (cf.
in a few weeks).

» But they consistently have strong performances in perplexity evaluations.



Count-and-normalize

Discriminative

Model Perplexity Entropy reduction
over baseline
individual | +KN5 | +KNb5+-cache || KN5 | KN54-cache
3-gram, Good-Turing smoothing (GT3) 165.2 - - - -
5-gram, Good-Turing smoothing (GT5) 162.3 - - - -
3-gram, Kneser-Ney smoothing (KN3) 148.3 - - - -
5-gram, Kneser-Ney smoothing (KN5) 141.2 - - - -
5-gram, Kneser-Ney smoothing + cache 125.7 - - - -
PAQ8010t 131.1 - - - -
Maximum entropy 5-gram model 142.1 138.7 124.5 0.4% 0.2%
Random clusterings LM 170.1 126.3 115.6 2.3% 1.7%
Random forest LM 131.9 131.3 117.5 1.5% 1.4%
Structured LM 146.1 125.5 114.4 2.4% 1.9%
Within and across sentence boundary LM 116.6 110.0 108.7 5.0% 3.0%
Log-bilinear LM 144.5 115.2 105.8 4.1% 3.6%
Feedforward neural network LM [50] 140.2 116.7 106.6 3.8% 3.4%
Feedforward neural network LM [40] 141.8 114.8 105.2 4.2% 3. 7%
Syntactical neural network LM 131.3 110.0 101.5 5.0% 4.4%
Recurrent neural network LM 124.7 105.7 97.5 5.8% 5.3%
Dynamically evaluated RNNLM 123.2 102.7 98.0 6.4% 5.1%
Combination of static RNNLMs 102.1 95.5 89.4 7.9% 7.0%
Combination of dynamic RNNLMs 101.0 92.9 90.0 8.5% 6.9%

Mikolov 2010




Model Size D Valid Test
Medium LSTM, Zaremba (2014) 1I0OM 2 86.2 827
Large LSTM, Zaremba (2014) 24M 2 822 784
VD LSTM, Press (2016) 51IM 2 758 732
VD LSTM, Inan (2016) OM 2 77.1 739
VD LSTM, Inan (2016) 28M 2 725 69.0
VD RHN, Zilly (2016) 24M 10 679 654
NAS, Zoph (2016) 25M - - 64.0
NAS, Zoph (2016) 54M - - 624
LSTM 1 61.8 59.6
LSTM 2 63.0 60.8
LSTM 10M 4 62.4 60.1
RHN 5 66.0 63.5
LSTM 1 61.4 59.5
LSTM 2 62.1 59.6
LSTM 24M 4 60.9 58.3
RHN 5 64.8 62.2

Melis, Dyer and Blunsom 2017



Distributed representation

* Vector representation that encodes information about the of
contexts a word appears in

* Words that appear in similar contexts have similar representations (and
similar meanings, by the ).



Types and tokens

* Type: bears

e Tokens:

* The ate the honey

* We spotted the

from the highway

* Yosemite has brown

* The chicago

didn’t make the playoffs

“bears”
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Contextualized word
representations

* Big idea: transform the representation of a token in a sentence (e.g.,
from a static word embedding) to be sensitive to its context in a
sentence and trainable to be optimized for a specific NLP task.



ELMo

Stacked BiRNN trained to predict next
word in language modeling task

B - o o o
A A

A

Peters et al. 2018

BERT

Transformer-based model to predict masked
word using bidirectional context + next sentence
prediction.

Devlin et al. 2019



—L.Mo

* Peters et al. (2018), “Deep Contextualized Word Representations” (NAACL)

* Big idea: transform the representation of a word (e.g., from a static word
embedding) to be sensitive to its local context in a sentence and optimized
for a specific NLP task.

* Output = word representations that can be plugged into just about any
architecture a word embedding can be used.



—L.Mo

* Train a bidirectional RNN language model with L layers on a bunch of text.

* Learn parameters to combine the RNN output across all layers for each
word in a sentence for a specific task.



RNN Language model

P(w |1 P(w |1, loved) P(wv | |, loved, the)
0.1 02 04 0.1 0.2 04 0.1 02 0.1 0.2 0.1 0.1 02 0.2 0.4
T softmax (s; W + b°) Tsoftmax (soW +b7) T softmax (s3W? + b°)
0.8 05 -09-24-18 -02 0.6 0.1 -0.2-0.3 1.7 0.8 0.2 -0.8 -0.1
51 52 53
27 31 -14 23 07 -0.7-08-1.3-0.2-0.9 23 15 11 14 13

X %) X3



RNN Language model

POy | ) PG |1, loved) P(v | 1, loved, the)
0.1 0.2 04 0.1 0.2 0.4 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.2 0.4
T softmax (sW? + b9) Tsoftmax (soW +b7) T softmax (s3W? + b°)
EEEEEENEE EEEEEEEEE (EEEEEEEER
50 51 52 53
27 31 -14 23 07 -0.7-0.8-1.3-0.2-0.9 23 15 1.1 14 13

X] %) X3



SNN

* With an RNN, we can generate a representation of the sequence as

* This encodes a representation of meaning specific to the local context a
word is used in.

0.8 05 -09-24-18 -0.2 0.6 0.1 -0.2-0.3 1.7 0.8 0.2 -0.8 -0.1 -0.1-08-0.1 1.1 -13 -0.7 11 -08-03 2.3

OO OSNONO

27 31 -14 -23 07 -0.7-08 -1.3-0.2-0.9 23 15 11 14 13 -09-15-07 09 0.2 -0.1-0.7-16 02 0.6



We can then swap that
RNN time step output for

the embeddings we
used earlier. 1902110207

‘0.8 ‘ 0.5 ‘-0.9‘-2.4‘-1.8‘ ‘-0.2‘ 0.6 ‘ 0.1 ‘-0.2‘-03 ‘ 17‘0.8‘0.2 ‘-0.8‘-0.1‘ ‘-0.1‘-0.8‘-0.1 ‘ 1.1 ‘-1.3‘ ‘-0.7‘ 1.1 ‘-0.8‘-0.3‘ 2.3

O OROSCRG

27 31 -14 -23 07 ‘—0.7‘—0.8‘—1.3‘—0.2‘—0.9 ‘2.3 ‘ 15 ‘ 11 ‘ 1.4‘ 1‘3‘ ‘—0.9‘—1.5‘—0‘7‘ 0.9 ‘ 0.2‘ ‘—0.1 ‘—0.7‘—1.6‘ 0.2 ‘ 0.6




What about the future context?

0.8 05 -09-24-18 -0.2 0.6 0.1 -0.2-0.3 1.7 0.8 0.2 -0.8 -0.1 -0.1-08-0.1 1.1 -13 -0.7 11 -08-03 2.3
27 31 -1.4 23 07 -0.7-08 -1.3-0.2-0.9 23 15 11 14 13 -09-15-07 09 0.2 -0.1-0.7-16 02 0.6

49



Bidirectional RNN

* A powerful alternative is make predictions conditioning both on the
and the

* Two RNNs

* One running left-to-right
* One right-to-left

* Each produces an output vector at each time step, which we concatenate



Bidirectional RNN

forward RNN

A A A A A

27 31 -14 23 07 -0.7-0.8 -1.3-0.2 -0.9 23 15 1114 13 -09-15-07 09 0.2 -0.1-0.7-16 0.2 0.6

51



Bidirectional RNN

backward RNN

0.7-1.1-5.4 0.7-1.1-5.4 0.7-1.1-5.4 0.7-1.1-5.4 0.7-1.1-5.4
27 31 -14 -23 07 -0.7-0.8 -1.3-0.2 -0.9 23 15 11 14 13 -09-15-0.7 09 0.2 -0.1-0.7 -16 0.2 0.6

52



Bidirectional RNN

.. 0.7-1.1-5.4 . 0.7-1.1-5.4 .. 0.7-1.1-5.4

ool e

27 31 -14 -23 07 ‘—0.7‘—0.8‘—1.3‘—0.2‘—0.9 ‘2.3 ‘ 15 ‘ 11 ‘ 1.4‘ 1‘3‘ ‘—0.9‘—1.5‘—0‘7‘ 0.9 ‘ 0.2‘ ‘—0.1 ‘—0.7‘—1.6‘ 0.2 ‘ 0.6

071154 071154

53



Bidirectional RNN

* The forward RNN and backward RNN each output a vector of size H at
each time step, which we concatenate into a vector of size 2H.

 The forward and backward RNN each have to be
learned during training.



Training BIRNNSs

e Given this definition of an BiRNN:
sy = Ry(a',5,71) = g(s Z+1VVb + 2t Wi+ by)
sf:Rf(m,sf h = g(s} 1Wf+fo+bf)

y; = softmax ([s:‘f, sl +b°)

* We have 8 sets of parameters to learn (3 for each RNN + 2 for the final
layer)



}%%%%

* Multiple RNNs, where the 2 é 6 é é é
output of one layer becomes

FREEE

Stacked RNN

w

|_\




—L.Mo

* Train a bidirectional RNN language model with L layers on a bunch of text.

* Learn parameters to combine the RNN output across all layers for each
word in a sentence for a specific task (NER, semantic role labeling,

question answering etc.). Large improvements over SOTA for lots of NLP
problems.



—L.Mo

INCREASE
TASK PREVIOUS SOTA OUR ELMo + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liu et al. (2017) 84.4 || 81.1 85.8 4.7 124.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7 £0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +0.19 || 90.15 92224+ 0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 514 54.74+0.5 3.3/6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across
six benchmark NLP tasks. The performance metric varies across tasks — accuracy for SNLI and SST-5; F; for
SQuAD, SRL and NER; average F; for Coref. Due to the small test sizes for NER and SST-5, we report the mean
and standard deviation across five runs with different random seeds. The “increase” column lists both the absolute

and relative improvements over our baseline.




SERT

* Transformer-based model (Vaswani et al. 2017) to predict masked word
using bidirectional context + next sentence prediction.

* Generates multiple layers of representations for each token sensitive to its
context of use.



This whole process defines
one attention block. The
input is a sequence of
(e.g. 100-dimensional)
vectors; the output of each
block is a sequence of
(100-dimensional) vectors.

07 13 04 -04 -07

€21

SelfAttn(e)1,1

V1,1

et

The

12 11 11 06 03 -0.1

07 -01 09 -11

€22

€22

y = LayerNorm(z + FFNN(z))

z = LayerNorm(e + SelfAttn(e))

SelfAttn(e)q 2

SelfAttn(e)1 3

V12 V1,3
€12 €13
dog barked




This whole process defines one attention

The input is a sequence of (e.g. 100-
dimensional) vectors; the output of each block is
a sequence of (100-dimensional) vectors.

Transformers can stack many such blocks;

where the output from block b is the input to
block b+1.

The dog barked



Each token in the input starts out represented

by token and position embeddings

"02] 1] o4]-08]-11]

1,1

03 03 17 07 -1

The

€12

dog

16 03 09 07 02

| €13

barked



The value for time step | at layer i is the result

of attention over all time steps in the previous
layer i-1

‘ -0.7 ‘ -1 .3‘ 0.4 ‘ -0.4 ‘ -0.7‘

€21 i

"02] 1] o4]-08]-11] 03 03 17 07 -1 16 03 09 07 02
| &1, | €12 | e13

The dog barked



04 -04 -07

-1.3

-0.7

€21

-09 -07 02

-0.3

1.6

03 -1.7 07 -1.1

0.3

-0.8 -1.1

0.1

-0.2

€13

€12

€11

barked

dog

The



11 06 03

-1.1

1.2

04 -04 -07

-1.3

-0.7

€22

€21

-09 -07 02

-0.3

1.6

03 -1.7 07 -1.1

0.3

-0.8 -1.1

0.1

-0.2

€13

€12

€11

barked

dog

The



-0.7 -01 09 -11

-0.1

11 06 03

=4

1.2

04 -04 -07

-1.3

-0.7

€23

€22

€21

-09 -07 02

-0.3

1.6

03 -1.7 07 -1.1

0.3

-0.8 -1.1

0.1

-0.2

€13

€12

€11

barked

dog

The



03 21 12 06
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At the end of this process, we have one
representation for each layer for each token
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WordPlece

* BERT uses WordPiece tokenization, which segments some morphological
structure of tokens

* \Vocabulary size: 30,000

The The
dog dog

barked bark #ed



* BERT also encodes each sentence by appending a special token to the
beginning ( ) and end ( ) of each sequence.

* This helps provides a single token that can be optimized to represent the
entire sequence (e.qg., for document classification)

03 02 07 O
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¢ \We can represent the entire document with this one [CLS] vector

¢ \Why does this work? When we design our network so that a
classification decision relies entirely on that one vector and allow all
the parameters of the network to be updated, the parameters of the
model are optimized to compress all the relevant information into that

neutral
sentiment

T one vector so that it can predict well (and minimize the 10ss).
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¢ \We can represent the entire document with this one [CLS] vector

¢ \Why does this work? When we design our network so that a
classification decision relies entirely on that one vector and allow all
the parameters of the network to be updated, the parameters of the
model are optimized to compress all the relevant information into that

neutral
sentiment

T one vector so that it can predict well (and minimize the loss).
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[SEP]



SERT

* Learn the parameters of this model with two objectives:

* Masked language modeling
* Next sentence prediction



Masked LM

* Mask one word from the input and try to predict that word as the output

* More powerful than an RNN LM (or even a BIRNN LM) since it can reason
about context of the word being predicted.

* A BiIRNN models context on both sides, but each RNN only has access to
information from one direction.
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[SEP]
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[SEP]



03 02 07 0 1.6 06 -0.3 0.4 4 06 23 09 01 02 04 06 11 -1.5 0.3 0.4 04 11 06 -0.3
€31 €32 3 €33 1 €34 1 €35 w €36 1
-1.71-0.6/-0.5|-1.6 06 02 2 09 05 19 -1.2 -0.2 -06 -0.7 -14 -21 -11 0 -16 -0.7 19 06 -04 -0.3
€2,1 1 €22 | €23 | €2,4 | €25 | |

€26

-0.5-0.5/ 0.6 | 0.7

0.1 0.7 -05 0.8

25 |-1.7/-0.9 -2.8

-05 -1.1 -06 1.4

06 -1.7 16 21

1.1°1-0:91 0.5/ 0.1

€11

€12

€13

€14

€15

€16

[CLS]

The

dog

[MASKED]

#ed

[SEP]



Next sentence prediction

* For a pair of sentences, predict from [CLS] representation whether
they appeared sequentially in the training data:

4+ [CLS] The dog bark #ed [SEP] He was hungry
= [CLS] The dog bark #ed [SEP] Paris is in France



SERT

* Deep layers (12 for BERT base, 24 for BERT large)
* Large representation sizes (768 per layer)

* Pretrained on English Wikipedia (2.5B words) and BooksCorpus (800M
words)



Yosemite has
brown bears

We saw a moose
in Alaska

Da bears lost
again! ©

®
Go pack go!




L=2

L=4

L=6

L=8

L=10

L=12

H=128
2/128 (BERT-Tiny)
4/128
6/128
8/128
10/128

12/128

SERT

H=256 H=512
2/256 2/512

4/256 (BERT-Mini) 4/512 (BERT-Small)

6/256 6/512
8/256 8/512 (BERT-Medium)
10/256 10/512
12/256 12/512

https://github.com/google-research/bert
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10/768

12/768 (BERT-Base)
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Pretrained models.

Here is a partial list of some of the available pretrained models together with a short presentation of each model.

For the full list, refer to https://huggingface.co/models.

Architecture Model id Details of the model

12-layer, 768-hidden, 12-heads, 110M parameters.

bert-base-uncased Trained on lower-cased English text.

24-layer, 1024-hidden, 16-heads, 336M parameters.

bert-large-uncased Trained on lower-cased English text.

https://huggingface.co/transformers/pretrained_models.html



BERT LANG STREET

Lost in (language-specific) BERT models? We are here to help!

We currently have indexed 31 BERT-based models, 19 Languages and 28 Tasks.
We have a total of 178 entries in this table; we also show Multilingual Bert (mBERT) results if available! (see our paper)

Curious which BERT model is the best for named entity recognition in Italianll B? Just type "Italian NER" in the search bar!

Show 10 4 entries Search:

Difference
Dataset- with
Language 4+ Dataset Domain Measure Performance mBERT

Arabic El Arabert vl m AJGT twitter Accuracy @ @ 10.2
Arabic B Arabert vl m HARD hotel reviews Accuracy @ @ 0.4
Arabic Arabert vl m ASTD twitter Accuracy @ @ 12.5
Arabic Arabert vl m ArSenTD-Lev twitter Accuracy @ m 8.4

https://bertlang.unibocconi.it

Source
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Bertology Code

* Hewittetal. 2019 Pre-trained models for BERT,

Transformer-XL, ALBERT, RoBERTa,
DistiBERT, GPT-2, etc. for English,
French, “Multilingual”

e Tenney et al. 2019

e McCoy et al. 2019

e Liuetal 2019
e Clark et al. 2019
e Goldberg 2019

e Michel et al. 2019


https://huggingface.co
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Tenney et al. (2019), "BERT Rediscovers the Classical NLP Pipeline"



