
Natural Language Processing

Info 159/259 
Lecture 6: Corpora & Annotation (Feb 5, 2024) 

Many slides & instruction ideas borrowed from:  
David Bamman & Dan Jurafsky



Attention

• Let’s incorporate structure (and parameters) into a network that 
captures which elements (tokens) in the input we should be attending 
to (and which we can ignore).



I loved the movie !
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Define v to be a vector to be learned; think of it as an “important 
word” vector.  The dot product here measures how similar each input 

vector is to that “important word” vector

v ∈ ℛH
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I loved the movie !

2.7 3.1 -1.4 -2.3 0.7v ∈ ℛH

x1 x2 x3 x4 x5

r1 = v⊤x1 r2 = v⊤x2 r3 = v⊤x3 r4 = v⊤x4 r5 = v⊤x5
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I loved the movie !

x1 x2 x3 x4 x5

r1 = v⊤x1 r2 = v⊤x2 r3 = v⊤x3 r4 = v⊤x4 r5 = v⊤x5

a = softmax(r)

Convert r into a vector of normalized weights that sum to 1.

0 0.320.64 0.02 0.02

r
a
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I loved the movie !

y

weighted sum

x1a1 + x2a2 + x3a3 + x4a4 + x5a5
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1.9 -0.2 -1.1 -0.2 -0.7



Transformers

• Vaswani et al. 2017, “Attention is 
All You Need” 

• Transforms map an input 
sequence of vectors to an output 
sequence of vectors of the same 
dimensionality 



e1,1 e1,2 e1,3

e2,1

The value for time step j at layer i is the result 
of attention over all time steps in the previous 

layer i-1

The dog barked
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-0.7 -1.3 0.4 -0.4 -0.7

Self-Attention



These are all parameters we 
learn. 100 is the original input 
dimension; 37 is a hyper- 
parameter we choose.

e1,1

The

original value

• Let’s separate out the different functions that an input vector has in attention 
by transforming it into separate representations for its role in a weighted sum 
(the value) from the roles used to assess compatibility (the query and key).

e1,1 ∈ ℝ100

key k1,1 ∈ ℝ37 (e1,1WK)

query q1,1 ∈ ℝ37 (e1,1WQ)

WQ ∈ ℝ100×37

WK ∈ ℝ100×37

WV ∈ ℝ100×100
value v1,1 ∈ ℝ100 (e1,1WV)



e1,1 e1,2 e1,3

The dog barked

-0.2 1 0.1 -0.8 -1.1 0.3 0.3 -1.7 0.7 -1.1 1.6 -0.3 -0.9 -0.7 0.2

score(ei, ej) = qi ⋅ kj

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

scores -1.4 0.64 0.14

a a = softmax(scores)0.07 0.58 0.35

• The compatibility score between two words is the dot product between 
their respective query and key vectors.



v1,1 v1,2 v1,3

e2,1

The dog barked

-0.7 -1.3 0.4 -0.4 -0.7

0.07
0.58

0.35

• The output of attention is a weighted sum over the values of the previous 
layer.



v1,1 v1,2 v1,3

e2,1

The dog barked

-0.7 -1.3 0.4 -0.4 -0.7

SelfAttn(e)1,1

z = LayerNorm(e + SelfAttn(e))

y = LayerNorm(z + FFNN(z))

e1,1 e1,2 e1,3

SelfAttn(e)1,2 SelfAttn(e)1,3

e2,2 e2,2

1.2 -1.1 1.1 0.6 0.3 -0.1 -0.7 -0.1 0.9 -1.1

This whole process defines 
one attention block.  The 
input is a sequence of 
(e.g. 100-dimensional) 
vectors; the output of each 
block is a sequence of 
(100-dimensional) vectors.

Input

Output



The dog barked

This whole process defines one attention block.  
The input is a sequence of (e.g. 100-
dimensional) vectors; the output of each block is 
a sequence of (100-dimensional) vectors. 

Transformers can stack many such blocks; 
where the output from block b is the input to 
block b+1.



-0.5 -0.5 0.6 0.7

e1,1

0.1 0.7 -0.5 0.8

e1,2

2.5 -1.7 -0.9 -2.8

e1,3

-0.5 -1.1 -0.6 1.4

e1,4

0.6 -1.7 1.6 2.1

e1,5

1.1 -0.9 0.5 0.1

e1,6

-1.7 -0.6 -0.5 -1.6

e2,1

0.6 0.2 2 0.9

e2,2

0.5 1.9 -1.2 -0.2

e2,3

-0.6 -0.7 -1.4 -2.1

e2,4

-1.1 0 -1.6 -0.7

e2,5

1.9 0.6 -0.4 -0.3

e2,6

0.3 0.2 0.7 0

e3,1

-1.6 -0.6 -0.3 -0.4

e3,2

-1 -0.6 2.3 0.9

e3,3

-0.1 0.2 0.4 -0.6

e3,4

1.1 -1.5 0.3 0.4

e3,5

-0.4 -1.1 -0.6 -0.3

e3,6

positive 
sentiment

• Does a transformer encode any intrinsic information about the 
order of words within a sequence?  Would the output 
probability for “Dr. No was amazing” be different from “was Dr. 
No amazing”?

[SEP][CLS] was Dr. No amazing



The dog barked

e1,1 e1,2 e1,3

Let’s assume that our input vectors are static 
word2vec embeddings of words + position 

encodings

-0.2 1 0.1 -0.8 -1.1 0.3 0.3 -1.7 0.7 -1.1 1.6 -0.3 -0.9 -0.7 0.2

Position encoding



One option is to add learnable position embeddings pe[i] to each word embedding e 
at position i (or concatenate them)

Position embeddings

0 2 -0.5 1.1 0.3 0.4 -0.5
1 -1.4 0.4 -0.2 -0.9 0.5 0.9
2 -1.1 -0.2 -0.5 0.2 -0.8 0
3 0.7 -0.3 1.5 -0.3 -0.4 0.1
4 -0.8 1.2 1 -0.7 -1 -0.4
5 0 0.3 -0.3 -0.9 0.2 1.4
6 0.8 0.8 -0.4 -1.4 1.2 -0.9
7 1.6 0.4 -1.1 0.7 0.1 1.6
… … … … … … …

ei = ei + pe[i]

position embeddings (pe)

ei = ei ⊕ pe[i]

We can add two 
vectors if they’re the 
same dimensionality

Or concatenate them if 
not



Transformers
• Transformers have been extremely influential in NLP (Vaswani et al. 2017 

has 35K citations!) 

• We’ll see them much more in this class in the context of specific 
applications: 

• Contextual language models, including causal self-attention (GPT), and 
bidirectional attention (BERT). 

• Machine translation 

• Text generation



Natural Language Processing

Info 159/259 
Lecture 6: Annotation (Feb 5, 2024) 

Many slides & instruction ideas borrowed from:  
David Bamman & Dan Jurafsky



Modern NLP is driven by 
annotated data

• Penn Treebank (1993; 1995;1999); morphosyntactic annotations of WSJ 

• OntoNotes (2007–2013); syntax, predicate-argument structure, word 
sense, coreference 

• FrameNet (1998–): frame-semantic lexical annotations 

• MPQA (2005): opinion/sentiment 

• SQuAD (2016): annotated questions + spans of answers in Wikipedia



• In most cases, the data we have is the product of human judgments. 

• What’s the correct part of speech tag? 

• Syntactic structure? 

• Sentiment?

Modern NLP is driven by 
annotated data



Penn Treebank



Propbank

SLP3



Squad

Rajpurkar et al 2016



Dogmatism

Fast and Horvitz (2016), “Identifying 
Dogmatism in Social Media: Signals 
and Models”



Sarcasm

https://www.nytimes.com/2016/08/12/opinion/an-even-stranger-donald-trump.html?ref=opinion


Fake News

http://www.fakenewschallenge.org

http://www.fakenewschallenge.org


Pustejovsky and Stubbs (2012), 
Natural Language Annotation for Machine Learning

Annotation 
pipeline



Annotation 
pipeline

Pustejovsky and Stubbs (2012), 
Natural Language Annotation for Machine Learning



• Our goal: given the constraints of our problem, how can we 
formalize our description of the annotation process to encourage 
multiple annotators to provide the same judgment?

Annotation guidelines



Annotation guidelines
• What is the goal of the project? 

• What is each tag called and how is it used? (Be specific: provide 
examples, and discuss gray areas.) 

• What parts of the text do you want annotated, and what should be left 
alone? 

• How will the annotation be created? (For example, explain which tags or 
documents to annotate first, how to use the annotation tools, etc.)

Pustejovsky and Stubbs (2012), Natural Language Annotation for Machine Learning



Why not do it alone?

• Expensive/time-consuming 

• Multiple people provide a measure of consistency: is the task well 
enough defined? 

• Low agreement = not enough training, guidelines not well enough 
defined, task is bad



Adjudication

• Adjudication is the process of deciding on a single annotation for a 
piece of text, using information about the independent annotations. 

• Can be as time-consuming (or more so) as a primary annotation. 

• Does not need to be identical with a primary annotation (both 
annotators can be wrong by chance)



Inter-annotator agreement

puppy fried 
chicken

puppy 6 3

fried 
chicken 2 5

annotator A

an
no

ta
to

r B

observed agreement = 11/16 = 68.75%

https://twitter.com/teenybiscuit/status/705232709220769792/photo/1


Cohen’s kappa
• If classes are imbalanced, we can get high inter annotator agreement 

simply by chance

puppy fried 
chicken

puppy 7 4

fried 
chicken 8 81

annotator A

an
no

ta
to

r B



Cohen’s kappa

puppy fried 
chicken

puppy 7 4

fried 
chicken 8 81

annotator A

an
no

ta
to

r B

� =
po � pe

1 � pe

� =
0.88 � pe

1 � pe

• If classes are imbalanced, we can get high inter annotator agreement 
simply by chance



Cohen’s kappa
• Expected probability of agreement is how often we would expect two 

annotators to agree assuming independent annotations

pe = P (A = puppy, B = puppy) + P (A = chicken, B = chicken)

= P (A = puppy)P (B = puppy) + P (A = chicken)P (B = chicken)



Cohen’s kappa
= P (A = puppy)P (B = puppy) + P (A = chicken)P (B = chicken)

puppy fried 
chicken

puppy 7 4

fried 
chicken 8 81

annotator A

an
no

ta
to

r B

P(A=puppy) 15/100 = 0.15

P(B=puppy) 11/100 = 0.11

P(A=chicken) 85/100 = 0.85

P(B=chicken) 89/100 = 0.89

= 0.15 � 0.11 + 0.85 � 0.89

= 0.773



Cohen’s kappa

puppy fried 
chicken

puppy 7 4

fried 
chicken 8 81

annotator A

an
no

ta
to

r B

� =
po � pe

1 � pe

� =
0.88 � pe

1 � pe

� =
0.88 � 0.773

1 � 0.773

= 0.471

• If classes are imbalanced, we can get high inter annotator agreement 
simply by chance



• “Good” values are subject to interpretation, but rule of thumb:

Cohen’s kappa

0.80-1.00 Very good agreement

0.60-0.80 Good agreement

0.40-0.60 Moderate agreement

0.20-0.40 Fair agreement

< 0.20 Poor agreement



Inter-annotator agreement
• Cohen’s kappa can be used for any number of classes. 

• Still requires two annotators who evaluate the same items. 

• Fleiss’ kappa generalizes to multiple annotators, each of whom may 
evaluate different items (e.g., crowdsourcing) 

• Krippendorf’s alpha: Going from categorical labels to real valued 

• Ordinal numbers (review scores).



Fleiss’ kappa

• Same fundamental idea of 
measuring the observed agreement 
compared to the agreement we 
would expect by chance. 

• With N > 2, we calculate agreement 
among pairs of annotators

� =
Po � Pe

1 � Pe



Average agreement among all items

Expected agreement by chance — joint 
probability two raters pick the same label is 
the product of their independent 
probabilities of picking that label

Pe =
K�

j=1

p2
j

Po =
1

N

N�

i=1

Pi

Fleiss’ kappa

� =
Po � Pe

1 � Pe



nijNumber of annotators (pairs) who assign 
category j to item i

Pi =
1

n(n � 1)

K�

j=1

nij(nij � 1)
For item i with n annotations, how many 
annotators (pairs) agree, among all n(n-1) 
possible pairs 

Fleiss’ kappa



Pi =
1

n(n � 1)

K�

j=1

nij(nij � 1)For item i with n annotations, how many 
annotators agree, among all n(n-1) possible pairs 

A B C D

+ + + -

Annotator

Label nij

+ 3

- 1

A-B 
B-A 
A-C 
C-A 
B-C 
C-B

Pi =
1

4(3)
(3(2) + 1(0))

agreeing pairs 
 of annotators →

Fleiss’ kappa



Average agreement among all items

Expected agreement by chance — joint 
probability two raters pick the same label is 
the product of their independent 
probabilities of picking that label

pj =
1

Nn

N�

i=1

nijProbability of category j

Pe =
K�

j=1

p2
j

Po =
1

N

N�

i=1

Pi

Fleiss’ kappa

nijNumber of annotators (pairs) who assign 
category j to item i



Fleiss’ kappa

• Same fundamental idea of 
measuring the observed agreement 
compared to the agreement we 
would expect by chance.

� =
Po � Pe

1 � Pe


