
Natural Language Processing

Info 159/259
Lecture 6: Corpora & Annotation (Feb 5, 2024)

Many slides & instruction ideas borrowed from:
David Bamman & Dan Jurafsky

Attention

• Let’s incorporate structure (and parameters) into a network that
captures which elements (tokens) in the input we should be attending
to (and which we can ignore).

I loved the movie !

2.7 3.1 -1.4 -2.3 0.7

Define v to be a vector to be learned; think of it as an “important
word” vector. The dot product here measures how similar each input

vector is to that “important word” vector

v ∈ ℛH

x1 x2 x3 x4 x5

2.7 3.1 -1.4 -2.3 0.7 -0.7 -0.8 -1.3 -0.2 -0.9 2.3 1.5 1.1 1.4 1.3 -0.9 -1.5 -0.7 0.9 0.2 -0.1 -0.7 -1.6 0.2 0.6

I loved the movie !

2.7 3.1 -1.4 -2.3 0.7v ∈ ℛH

x1 x2 x3 x4 x5

r1 = v⊤x1 r2 = v⊤x2 r3 = v⊤x3 r4 = v⊤x4 r5 = v⊤x5

-3.4 2.4 -0.8 -1.2 1.7

2.7 3.1 -1.4 -2.3 0.7 -0.7 -0.8 -1.3 -0.2 -0.9 2.3 1.5 1.1 1.4 1.3 -0.9 -1.5 -0.7 0.9 0.2 -0.1 -0.7 -1.6 0.2 0.6

I loved the movie !

x1 x2 x3 x4 x5

r1 = v⊤x1 r2 = v⊤x2 r3 = v⊤x3 r4 = v⊤x4 r5 = v⊤x5

a = softmax(r)

Convert r into a vector of normalized weights that sum to 1.

0 0.320.64 0.02 0.02

r
a

-3.4 2.4 -0.8 -1.2 1.7

2.7 3.1 -1.4 -2.3 0.7 -0.7 -0.8 -1.3 -0.2 -0.9 2.3 1.5 1.1 1.4 1.3 -0.9 -1.5 -0.7 0.9 0.2 -0.1 -0.7 -1.6 0.2 0.6

I loved the movie !

y

weighted sum

x1a1 + x2a2 + x3a3 + x4a4 + x5a5

2.7 3.1 -1.4 -2.3 0.7 -0.7 -0.8 -1.3 -0.2 -0.9 2.3 1.5 1.1 1.4 1.3 -0.9 -1.5 -0.7 0.9 0.2 -0.1 -0.7 -1.6 0.2 0.6

1.9 -0.2 -1.1 -0.2 -0.7

Transformers

• Vaswani et al. 2017, “Attention is
All You Need”

• Transforms map an input
sequence of vectors to an output
sequence of vectors of the same
dimensionality

e1,1 e1,2 e1,3

e2,1

The value for time step j at layer i is the result
of attention over all time steps in the previous

layer i-1

The dog barked

-0.2 1 0.1 -0.8 -1.1 0.3 0.3 -1.7 0.7 -1.1 1.6 -0.3 -0.9 -0.7 0.2

-0.7 -1.3 0.4 -0.4 -0.7

Self-Attention

These are all parameters we
learn. 100 is the original input
dimension; 37 is a hyper-
parameter we choose.

e1,1

The

original value

• Let’s separate out the different functions that an input vector has in attention
by transforming it into separate representations for its role in a weighted sum
(the value) from the roles used to assess compatibility (the query and key).

e1,1 ∈ ℝ100

key k1,1 ∈ ℝ37 (e1,1WK)

query q1,1 ∈ ℝ37 (e1,1WQ)

WQ ∈ ℝ100×37

WK ∈ ℝ100×37

WV ∈ ℝ100×100
value v1,1 ∈ ℝ100 (e1,1WV)

e1,1 e1,2 e1,3

The dog barked

-0.2 1 0.1 -0.8 -1.1 0.3 0.3 -1.7 0.7 -1.1 1.6 -0.3 -0.9 -0.7 0.2

score(ei, ej) = qi ⋅ kj

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

scores -1.4 0.64 0.14

a a = softmax(scores)0.07 0.58 0.35

• The compatibility score between two words is the dot product between
their respective query and key vectors.

v1,1 v1,2 v1,3

e2,1

The dog barked

-0.7 -1.3 0.4 -0.4 -0.7

0.07
0.58

0.35

• The output of attention is a weighted sum over the values of the previous
layer.

v1,1 v1,2 v1,3

e2,1

The dog barked

-0.7 -1.3 0.4 -0.4 -0.7

SelfAttn(e)1,1

z = LayerNorm(e + SelfAttn(e))

y = LayerNorm(z + FFNN(z))

e1,1 e1,2 e1,3

SelfAttn(e)1,2 SelfAttn(e)1,3

e2,2 e2,2

1.2 -1.1 1.1 0.6 0.3 -0.1 -0.7 -0.1 0.9 -1.1

This whole process defines
one attention block. The
input is a sequence of
(e.g. 100-dimensional)
vectors; the output of each
block is a sequence of
(100-dimensional) vectors.

Input

Output

The dog barked

This whole process defines one attention block.
The input is a sequence of (e.g. 100-
dimensional) vectors; the output of each block is
a sequence of (100-dimensional) vectors.

Transformers can stack many such blocks;
where the output from block b is the input to
block b+1.

-0.5 -0.5 0.6 0.7

e1,1

0.1 0.7 -0.5 0.8

e1,2

2.5 -1.7 -0.9 -2.8

e1,3

-0.5 -1.1 -0.6 1.4

e1,4

0.6 -1.7 1.6 2.1

e1,5

1.1 -0.9 0.5 0.1

e1,6

-1.7 -0.6 -0.5 -1.6

e2,1

0.6 0.2 2 0.9

e2,2

0.5 1.9 -1.2 -0.2

e2,3

-0.6 -0.7 -1.4 -2.1

e2,4

-1.1 0 -1.6 -0.7

e2,5

1.9 0.6 -0.4 -0.3

e2,6

0.3 0.2 0.7 0

e3,1

-1.6 -0.6 -0.3 -0.4

e3,2

-1 -0.6 2.3 0.9

e3,3

-0.1 0.2 0.4 -0.6

e3,4

1.1 -1.5 0.3 0.4

e3,5

-0.4 -1.1 -0.6 -0.3

e3,6

positive
sentiment

• Does a transformer encode any intrinsic information about the
order of words within a sequence? Would the output
probability for “Dr. No was amazing” be different from “was Dr.
No amazing”?

[SEP][CLS] was Dr. No amazing

The dog barked

e1,1 e1,2 e1,3

Let’s assume that our input vectors are static
word2vec embeddings of words + position

encodings

-0.2 1 0.1 -0.8 -1.1 0.3 0.3 -1.7 0.7 -1.1 1.6 -0.3 -0.9 -0.7 0.2

Position encoding

One option is to add learnable position embeddings pe[i] to each word embedding e
at position i (or concatenate them)

Position embeddings

0 2 -0.5 1.1 0.3 0.4 -0.5
1 -1.4 0.4 -0.2 -0.9 0.5 0.9
2 -1.1 -0.2 -0.5 0.2 -0.8 0
3 0.7 -0.3 1.5 -0.3 -0.4 0.1
4 -0.8 1.2 1 -0.7 -1 -0.4
5 0 0.3 -0.3 -0.9 0.2 1.4
6 0.8 0.8 -0.4 -1.4 1.2 -0.9
7 1.6 0.4 -1.1 0.7 0.1 1.6
… … … … … … …

ei = ei + pe[i]

position embeddings (pe)

ei = ei ⊕ pe[i]

We can add two
vectors if they’re the
same dimensionality

Or concatenate them if
not

Transformers
• Transformers have been extremely influential in NLP (Vaswani et al. 2017

has 35K citations!)

• We’ll see them much more in this class in the context of specific
applications:

• Contextual language models, including causal self-attention (GPT), and
bidirectional attention (BERT).

• Machine translation

• Text generation

Natural Language Processing

Info 159/259
Lecture 6: Annotation (Feb 5, 2024)

Many slides & instruction ideas borrowed from:
David Bamman & Dan Jurafsky

Modern NLP is driven by
annotated data

• Penn Treebank (1993; 1995;1999); morphosyntactic annotations of WSJ

• OntoNotes (2007–2013); syntax, predicate-argument structure, word
sense, coreference

• FrameNet (1998–): frame-semantic lexical annotations

• MPQA (2005): opinion/sentiment

• SQuAD (2016): annotated questions + spans of answers in Wikipedia

• In most cases, the data we have is the product of human judgments.

• What’s the correct part of speech tag?

• Syntactic structure?

• Sentiment?

Modern NLP is driven by
annotated data

Penn Treebank

Propbank

SLP3

Squad

Rajpurkar et al 2016

Dogmatism

Fast and Horvitz (2016), “Identifying
Dogmatism in Social Media: Signals
and Models”

Sarcasm

https://www.nytimes.com/2016/08/12/opinion/an-even-stranger-donald-trump.html?ref=opinion

Fake News

http://www.fakenewschallenge.org

http://www.fakenewschallenge.org

Pustejovsky and Stubbs (2012),
Natural Language Annotation for Machine Learning

Annotation
pipeline

Annotation
pipeline

Pustejovsky and Stubbs (2012),
Natural Language Annotation for Machine Learning

• Our goal: given the constraints of our problem, how can we
formalize our description of the annotation process to encourage
multiple annotators to provide the same judgment?

Annotation guidelines

Annotation guidelines
• What is the goal of the project?

• What is each tag called and how is it used? (Be specific: provide
examples, and discuss gray areas.)

• What parts of the text do you want annotated, and what should be left
alone?

• How will the annotation be created? (For example, explain which tags or
documents to annotate first, how to use the annotation tools, etc.)

Pustejovsky and Stubbs (2012), Natural Language Annotation for Machine Learning

Why not do it alone?

• Expensive/time-consuming

• Multiple people provide a measure of consistency: is the task well
enough defined?

• Low agreement = not enough training, guidelines not well enough
defined, task is bad

Adjudication

• Adjudication is the process of deciding on a single annotation for a
piece of text, using information about the independent annotations.

• Can be as time-consuming (or more so) as a primary annotation.

• Does not need to be identical with a primary annotation (both
annotators can be wrong by chance)

Inter-annotator agreement

puppy fried
chicken

puppy 6 3

fried
chicken 2 5

annotator A

an
no

ta
to

r B

observed agreement = 11/16 = 68.75%

https://twitter.com/teenybiscuit/status/705232709220769792/photo/1

Cohen’s kappa
• If classes are imbalanced, we can get high inter annotator agreement

simply by chance

puppy fried
chicken

puppy 7 4

fried
chicken 8 81

annotator A

an
no

ta
to

r B

Cohen’s kappa

puppy fried
chicken

puppy 7 4

fried
chicken 8 81

annotator A

an
no

ta
to

r B

� =
po � pe

1 � pe

� =
0.88 � pe

1 � pe

• If classes are imbalanced, we can get high inter annotator agreement
simply by chance

Cohen’s kappa
• Expected probability of agreement is how often we would expect two

annotators to agree assuming independent annotations

pe = P (A = puppy, B = puppy) + P (A = chicken, B = chicken)

= P (A = puppy)P (B = puppy) + P (A = chicken)P (B = chicken)

Cohen’s kappa
= P (A = puppy)P (B = puppy) + P (A = chicken)P (B = chicken)

puppy fried
chicken

puppy 7 4

fried
chicken 8 81

annotator A

an
no

ta
to

r B

P(A=puppy) 15/100 = 0.15

P(B=puppy) 11/100 = 0.11

P(A=chicken) 85/100 = 0.85

P(B=chicken) 89/100 = 0.89

= 0.15 � 0.11 + 0.85 � 0.89

= 0.773

Cohen’s kappa

puppy fried
chicken

puppy 7 4

fried
chicken 8 81

annotator A

an
no

ta
to

r B

� =
po � pe

1 � pe

� =
0.88 � pe

1 � pe

� =
0.88 � 0.773

1 � 0.773

= 0.471

• If classes are imbalanced, we can get high inter annotator agreement
simply by chance

• “Good” values are subject to interpretation, but rule of thumb:

Cohen’s kappa

0.80-1.00 Very good agreement

0.60-0.80 Good agreement

0.40-0.60 Moderate agreement

0.20-0.40 Fair agreement

< 0.20 Poor agreement

Inter-annotator agreement
• Cohen’s kappa can be used for any number of classes.

• Still requires two annotators who evaluate the same items.

• Fleiss’ kappa generalizes to multiple annotators, each of whom may
evaluate different items (e.g., crowdsourcing)

• Krippendorf’s alpha: Going from categorical labels to real valued

• Ordinal numbers (review scores).

Fleiss’ kappa

• Same fundamental idea of
measuring the observed agreement
compared to the agreement we
would expect by chance.

• With N > 2, we calculate agreement
among pairs of annotators

� =
Po � Pe

1 � Pe

Average agreement among all items

Expected agreement by chance — joint
probability two raters pick the same label is
the product of their independent
probabilities of picking that label

Pe =
K�

j=1

p2
j

Po =
1

N

N�

i=1

Pi

Fleiss’ kappa

� =
Po � Pe

1 � Pe

nijNumber of annotators (pairs) who assign
category j to item i

Pi =
1

n(n � 1)

K�

j=1

nij(nij � 1)
For item i with n annotations, how many
annotators (pairs) agree, among all n(n-1)
possible pairs

Fleiss’ kappa

Pi =
1

n(n � 1)

K�

j=1

nij(nij � 1)For item i with n annotations, how many
annotators agree, among all n(n-1) possible pairs

A B C D

+ + + -

Annotator

Label nij

+ 3

- 1

A-B
B-A
A-C
C-A
B-C
C-B

Pi =
1

4(3)
(3(2) + 1(0))

agreeing pairs
 of annotators →

Fleiss’ kappa

Average agreement among all items

Expected agreement by chance — joint
probability two raters pick the same label is
the product of their independent
probabilities of picking that label

pj =
1

Nn

N�

i=1

nijProbability of category j

Pe =
K�

j=1

p2
j

Po =
1

N

N�

i=1

Pi

Fleiss’ kappa

nijNumber of annotators (pairs) who assign
category j to item i

Fleiss’ kappa

• Same fundamental idea of
measuring the observed agreement
compared to the agreement we
would expect by chance.

� =
Po � Pe

1 � Pe

