
Natural Language Processing

Info 159/259 
Lecture 4: Text classification with Neural Networks 

Many slides & instruction ideas borrowed from:  
David Bamman, Sofia Serrano, Dan Jurafsky & Mohit Iyyer 



Logistics
• Quiz 1 is due tonight (11:59 pm) 

• Quiz 2 will be out this Friday (due next Monday Feb 5). 

• Homework 1 is out & due next Tuesday, Feb 6 (11:59 pm) 

• Homework 2 will be out early next week. 

• Info about the Annotation Project and final project/survey will be released 
gradually starting next week. 

• Tonight Lecture: Text Classification with Neural Networks



Binary logistic regression

Y = {0, 1}output space

P(y = 1 | x, β) =
1

1 + exp
�
�

�F
i=1 xiβi

�



Multiclass logistic regression

output space

P(Y = y | X = x; β) =
exp(x�βy)�

y��Y exp(x�βy�)

Y = {1, . . . ,K}



• As a discriminative classifier, logistic 
regression doesn’t assume features are 
independent. 

• Its power partly comes in the ability to create 
richly expressive features without the burden of 
independence. 

• We can represent text through features that are 
not just the identities of individual words, but 
any feature that is scoped over the entirety of 
the input.

features

contains like

has word that shows up in 
positive sentiment dictionary

review begins with “I like”

at least 5 mentions of positive 
affectual verbs (like, love, 

etc.)

Features



• We want to find the value of β that leads to the highest value of the 
conditional log likelihood:

6

�(β) =
N�

i=1
logP(yi | xi, β)

Logistic regression



L2 regularization

• We can do this by changing the function we’re trying to optimize by adding a penalty for having 
values of β that are high 

• This is equivalent to saying that each β element is drawn from a Normal distribution centered on 0. 

• η controls how much of a penalty to pay for coefficients that are far from 0 (optimize on 
development data)

�(β) =
N�

i=1
logP(yi | xi, β)

� �� �
we want this to be high

� η
F�

j=1
β2
j

� �� �
but we want this to be small



L1 regularization

• L1 regularization encourages coefficients to be exactly 0. 

• η again controls how much of a penalty to pay for coefficients that 
are far from 0 (optimize on development data)

�(β) =
N�

i=1
logP(yi | xi, β)

� �� �
we want this to be high

� η
F�

j=1
|βj|

� �� �
but we want this to be small



. 

https://www.forbes.com/sites/kevinmurnane/2016/04/01/what-is-
deep-learning-and-how-is-it-useful



History of NLP
• Foundational insights, 1940s/1950s 

• Two camps (symbolic/stochastic), 1957-1970 

• Four paradigms  (stochastic, logic-based, NLU, discourse modeling), 1970-1983 

• Empiricism and FSM (1983-1993) 

• Field comes together (1994-1999) 

• Machine learning (2000–today) 

• Neural networks (~2014–today) J&M 2008, ch 1



• Language modeling [Mikolov et al. 2010] 

• Text classification [Kim 2014; Iyyer et al. 2015] 

• Syntactic parsing [Chen and Manning 2014, Dyer et al. 2015, Andor et al. 2016] 

• CCG super tagging [Lewis and Steedman 2014] 

• Machine translation [Cho et al. 2014, Sustkever et al. 2014] 

• (for overview, see Goldberg 2017, 1.3.1)

Neural networks in NLP



Neural networks

• Discrete, high-dimensional representation of inputs (one-hot vectors) -> 
low-dimensional “distributed” representations. 

• Static representations -> contextual representations, where 
representations of words are sensitive to local context. 

• Non-linear interactions of input features 

• Multiple layers to capture hierarchical structure



Neural network libraries



Logistic regression

x β

1 -0.5

1 -1.7

0 0.3

not

bad

movie

P( ̂y = 1) =
1

1 + exp (−∑F
i=1 xiβi)



SGD

15

Calculate the derivative of some loss function with respect to parameters we 
can change, update accordingly to make predictions on training data a little 

less wrong next time.



x1 β1

yx2

x3

β2

β3

x β
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Logistic regression

P( ̂y = 1) =
1

1 + exp (−∑F
i=1 xiβi)



Feedforward neural network
• Input and output are mediated by at least one hidden layer. 

• a.k.a. Multi Layer Perceptron (MLP)

x1

h1

x2

x3

h2

y



x1

h1

x2

x3

h2

y

Input Output“Hidden” 
Layer

W V

V1

V2

W1,1

W1,2

W2,1

W2,2

W3,1

W3,2

*For simplicity, we’re leaving out the bias term, 
but assume most layers have them as well.
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x1
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W V

hj = f
� F�

i=1
xiWi,j

�
the hidden nodes are 

completely determined by the 
input and weights
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h1 = f
� F�

i=1
xiWi,1

�



Activation functions
σ(z) =

1
1 + exp(�z)
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x1 β1

yx2

x3

β2

β3

Logistic regression

We can think about logistic regression as a 
neural network with no hidden layers

P( ̂y = 1) =
1

1 + exp (−∑F
i=1 xiβi)

P( ̂y = 1) = σ (
F

∑
i=1

xiβi)



Activation functions
tanh(z) =

exp(z) � exp(�z)
exp(z) + exp(�z)
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Activation functions
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ReLU(z) = max(0, z)



• ReLU and tanh are both used extensively in modern systems. 

• Sigmoid is useful for final layer to scale output between 0 and 1, but 
is not often used in intermediate layers.

Goldberg 46

function

derivative



W V

h2 = σ
� F�

i=1
xiWi,2

�

h1 = σ
� F�

i=1
xiWi,1

�

x1
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x2

x3

h2

y

ŷ = σ [V1h1 + V2h2]



W V

we can express y as a function only of the input x and the weights W and V

x1

h1

x2

x3

h2

y

ŷ = σ
�
V1

�
σ

� F�

i
xiWi,1

��
+ V2

�
σ

� F�

i
xiWi,2

���



This is hairy, but differentiable

Backpropagation: Given training samples of <x,y> pairs, we can use 
stochastic gradient descent to find the values of W and V that minimize 
the loss.

ŷ = σ

�

�����
V1

�
σ

� F�

i
xiWi,1

��

� �� �
h1

+V2

�
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� F�
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•

Chain Rule (reminder)



W V

x1

h1

x2

x3

h2

y

σ (σ (xW)V)

log (σ (σ (xW)V))

Neural networks are a series of 
functions chained together

The loss is another function 
chained on top

xW σ (xW) σ (xW)V



�

�V log (σ (σ (xW)V))

=
� log (σ (σ (xW)V))

�σ (σ (xW)V)

�σ (σ (xW)V)

�σ (xW)V
�σ (xW)V

�V

=

A� �� �
� log (σ (hV))

�σ (hV)

B� �� �
�σ (hV)

�hV

C����
�hV
�V

Chain rule
Let’s take the likelihood for a 
single training example with 

label y =1; we want this value to 
be as high as possible



=

A� �� �
1

σ (hV)
�

B� �� �
σ (hV) � (1 � σ (hV)) �

C����
h

= (1 � σ (hV))h
= (1 � ŷ)h

=

A� �� �
� log (σ (hV))

�σ (hV)

B� �� �
�σ (hV)

�hV

C����
�hV
�V

Chain rule



• Tremendous flexibility on design choices (exchange feature 
engineering for model engineering) 

• Articulate model structure and use the chain rule to derive parameter 
updates.

Neural networks



x1
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x2

x3

h2

y

Neural network structures

Output one real value; sigmoid function 
for output gives single probability 

between 0 and 1 

1
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Neural network structures

y

y

1

0

0

Multiclass: output 3 values, only one = 1 in training data; 
softmax function for output gives probability between 0 and 
1 for each class (all class probabilities sum to 1); classes 

compete with each other.
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Neural network structures

output 3 values, several = 1 in training data; sigmoid 
function for each output gives probability of presence of 
that label; classes do not compete with each other since 

multiple can be present together.

y

y

1

1

0

nsubj_walks

dobj_hits

nsubj_says

glad

happy

sad



Regularization

• Increasing the number of parameters = increasing the possibility for 
overfitting to training data



Regularization

• L2 regularization: penalize W and V for being too large 

• Dropout: when training on a <x,y> pair, randomly remove some node and 
weights. 

• Early stopping: Stop backpropagation before the training error is too 
small.



Deeper networks

x1

h1

x2

x3

h2 y

W1 V

x3

h2

h2

h2

W2



Talk to your neighbor!



Densely 
connected layerx1
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h = �(xW )



Convolutional networks

• With convolution networks, the same operation (i.e., the same set of 
parameters) is applied to different regions of the input



2D Convolution

0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0

 

blurring

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
https://docs.gimp.org/en/plug-in-convmatrix.html


1D Convolution
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h1
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h5

Convolutional 
networksx1

x2

x3

x4

x5

x6

x7

W1

x

h1 = �(x1W1 + x2W2 + x3W3)

I

hated

it

I

really

hated

it

h1=f(I, hated, it)

h3=f(it, I, really)

h2=f(hated, it, I)

h4=f(I, really, hated)

h5=f(really, hated, it)

W2

W3

Parameters

Input



Indicator vector

• Every token is a V-dimensional vector 
(size of the vocab) with a single 1 
identifying the word

vocab item indicator

a 0

aa 0

aal 0

aalii 0

aam 0

aardvark 1

aardwolf 0

aba 0
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h1 = �(x1W1 + x2W2 + x3W3)
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h1
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For indicator vectors, we’re just adding 
these numbers together

h1 = �(W1,xid
1

+ W2,xid
2

+ W3,xid
3

)

(Where xnid specifies the location of the 1 in 
the vector — i.e., the vocabulary id)
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h1
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For dense input vectors (e.g., 
embeddings), full dot product
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h1 = �(x1W1 + x2W2 + x3W3)



Pooling7

3

1
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• Down-samples a layer by selecting a 
single point from some set 

• Max-pooling selects the largest value

7

9
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Global pooling7

3
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• Down-samples a layer by selecting a 
single point from some set 

• Max-pooling over time (global max 
pooling) selects the largest value over 
an entire sequence 

• Very common for NLP problems.

9



Convolutional 
networksx1

x2

x3

x4

x5

x6

x7
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2
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max poolingconvolution

This defines one filter.



x1
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1

1
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Wa Wb Wc Wd

We can specify multiple filters; each 
filter is a separate set of parameters to 

be learned

h1 = �(x�W ) � R4



• With max pooling, we select a single number for each filter over all tokens 

• (e.g., with 100 filters, the output of max pooling stage = 100-dimensional 
vector) 

• If we specify multiple filters, we can also scope each filter over different 
window sizes

Convolutional networks



Zhang and Wallace 2016, “A Sensitivity Analysis of 
(and Practitioners’ Guide to) Convolutional Neural 

Networks for Sentence Classification”



CNN as important ngram 
detector

Higher-order ngrams are much more 
informative than just unigrams (e.g., “i 
don’t like this movie” [“I”, “don’t”, “like”, 
“this”, “movie”]) 

We can think about a CNN as 
providing a mechanism for detecting 
important (sequential) ngrams without 
having the burden of creating them as 
unique features

unique types

unigrams 50921

bigrams 451,220

trigrams 910,694

4-grams 1,074,921

Unique ngrams (1-4) in Cornell movie review dataset



Logistics
• Quiz 1 is due tonight (11:59 pm) 

• Quiz 2 will be out this Friday (due next Monday Feb 5). 

• Homework 1 is out & due next Tuesday, Feb 6 (11:59 pm) 

• Homework 2 will be out early next week. 

• Next Lecture: Text Classification with Contextual Embedding, BERT, etc.


