
Natural Language Processing

Info 159/259
Lecture 4: Text classification with Neural Networks

Many slides & instruction ideas borrowed from:
David Bamman, Sofia Serrano, Dan Jurafsky & Mohit Iyyer

Logistics
• Quiz 1 is due tonight (11:59 pm)

• Quiz 2 will be out this Friday (due next Monday Feb 5).

• Homework 1 is out & due next Tuesday, Feb 6 (11:59 pm)

• Homework 2 will be out early next week.

• Info about the Annotation Project and final project/survey will be released
gradually starting next week.

• Tonight Lecture: Text Classification with Neural Networks

Binary logistic regression

Y = {0, 1}output space

P(y = 1 | x, β) =
1

1 + exp
�
�

�F
i=1 xiβi

�

Multiclass logistic regression

output space

P(Y = y | X = x; β) =
exp(x�βy)�

y��Y exp(x�βy�)

Y = {1, . . . ,K}

• As a discriminative classifier, logistic
regression doesn’t assume features are
independent.

• Its power partly comes in the ability to create
richly expressive features without the burden of
independence.

• We can represent text through features that are
not just the identities of individual words, but
any feature that is scoped over the entirety of
the input.

features

contains like

has word that shows up in
positive sentiment dictionary

review begins with “I like”

at least 5 mentions of positive
affectual verbs (like, love,

etc.)

Features

• We want to find the value of β that leads to the highest value of the
conditional log likelihood:

6

�(β) =
N�

i=1
logP(yi | xi, β)

Logistic regression

L2 regularization

• We can do this by changing the function we’re trying to optimize by adding a penalty for having
values of β that are high

• This is equivalent to saying that each β element is drawn from a Normal distribution centered on 0.

• η controls how much of a penalty to pay for coefficients that are far from 0 (optimize on
development data)

�(β) =
N�

i=1
logP(yi | xi, β)

� �� �
we want this to be high

� η
F�

j=1
β2
j

� �� �
but we want this to be small

L1 regularization

• L1 regularization encourages coefficients to be exactly 0.

• η again controls how much of a penalty to pay for coefficients that
are far from 0 (optimize on development data)

�(β) =
N�

i=1
logP(yi | xi, β)

� �� �
we want this to be high

� η
F�

j=1
|βj|

� �� �
but we want this to be small

.

https://www.forbes.com/sites/kevinmurnane/2016/04/01/what-is-
deep-learning-and-how-is-it-useful

History of NLP
• Foundational insights, 1940s/1950s

• Two camps (symbolic/stochastic), 1957-1970

• Four paradigms (stochastic, logic-based, NLU, discourse modeling), 1970-1983

• Empiricism and FSM (1983-1993)

• Field comes together (1994-1999)

• Machine learning (2000–today)

• Neural networks (~2014–today) J&M 2008, ch 1

• Language modeling [Mikolov et al. 2010]

• Text classification [Kim 2014; Iyyer et al. 2015]

• Syntactic parsing [Chen and Manning 2014, Dyer et al. 2015, Andor et al. 2016]

• CCG super tagging [Lewis and Steedman 2014]

• Machine translation [Cho et al. 2014, Sustkever et al. 2014]

• (for overview, see Goldberg 2017, 1.3.1)

Neural networks in NLP

Neural networks

• Discrete, high-dimensional representation of inputs (one-hot vectors) ->
low-dimensional “distributed” representations.

• Static representations -> contextual representations, where
representations of words are sensitive to local context.

• Non-linear interactions of input features

• Multiple layers to capture hierarchical structure

Neural network libraries

Logistic regression

x β

1 -0.5

1 -1.7

0 0.3

not

bad

movie

P(̂y = 1) =
1

1 + exp (−∑F
i=1 xiβi)

SGD

15

Calculate the derivative of some loss function with respect to parameters we
can change, update accordingly to make predictions on training data a little

less wrong next time.

x1 β1

yx2

x3

β2

β3

x β

1 -0.5

1 -1.7

0 0.3

not

bad

movie

Logistic regression

P(̂y = 1) =
1

1 + exp (−∑F
i=1 xiβi)

Feedforward neural network
• Input and output are mediated by at least one hidden layer.

• a.k.a. Multi Layer Perceptron (MLP)

x1

h1

x2

x3

h2

y

x1

h1

x2

x3

h2

y

Input Output“Hidden”
Layer

W V

V1

V2

W1,1

W1,2

W2,1

W2,2

W3,1

W3,2

*For simplicity, we’re leaving out the bias term,
but assume most layers have them as well.

x1

h1

x2

x3

h2

y

W V

x

1

1

0

not

bad

movie

W

-0.5 1.3

0.4 0.08

1.7 3.1

V

4.1

-0.9

y

1

x1

h1

x2

x3

h2

y

W V

hj = f
� F�

i=1
xiWi,j

�
the hidden nodes are

completely determined by the
input and weights

x1

h1

x2

x3

h2

y

W V

h1 = f
� F�

i=1
xiWi,1

�

Activation functions
σ(z) =

1
1 + exp(�z)

0.00

0.25

0.50

0.75

1.00

-10 -5 0 5 10
x

y

x1 β1

yx2

x3

β2

β3

Logistic regression

We can think about logistic regression as a
neural network with no hidden layers

P(̂y = 1) =
1

1 + exp (−∑F
i=1 xiβi)

P(̂y = 1) = σ (
F

∑
i=1

xiβi)

Activation functions
tanh(z) =

exp(z) � exp(�z)
exp(z) + exp(�z)

-1.0

-0.5

0.0

0.5

1.0

-10 -5 0 5 10
x

y

Activation functions

0.0

2.5

5.0

7.5

10.0

-10 -5 0 5 10
x

y

ReLU(z) = max(0, z)

• ReLU and tanh are both used extensively in modern systems.

• Sigmoid is useful for final layer to scale output between 0 and 1, but
is not often used in intermediate layers.

Goldberg 46

function

derivative

W V

h2 = σ
� F�

i=1
xiWi,2

�

h1 = σ
� F�

i=1
xiWi,1

�

x1

h1

x2

x3

h2

y

ŷ = σ [V1h1 + V2h2]

W V

we can express y as a function only of the input x and the weights W and V

x1

h1

x2

x3

h2

y

ŷ = σ
�
V1

�
σ

� F�

i
xiWi,1

��
+ V2

�
σ

� F�

i
xiWi,2

���

This is hairy, but differentiable

Backpropagation: Given training samples of <x,y> pairs, we can use
stochastic gradient descent to find the values of W and V that minimize
the loss.

ŷ = σ

�

�����
V1

�
σ

� F�

i
xiWi,1

��

� �� �
h1

+V2

�
σ

� F�

i
xiWi,2

��

� �� �
h2

�

�����

•

Chain Rule (reminder)

W V

x1

h1

x2

x3

h2

y

σ (σ (xW)V)

log (σ (σ (xW)V))

Neural networks are a series of
functions chained together

The loss is another function
chained on top

xW σ (xW) σ (xW)V

�

�V log (σ (σ (xW)V))

=
� log (σ (σ (xW)V))

�σ (σ (xW)V)

�σ (σ (xW)V)

�σ (xW)V
�σ (xW)V

�V

=

A� �� �
� log (σ (hV))

�σ (hV)

B� �� �
�σ (hV)

�hV

C����
�hV
�V

Chain rule
Let’s take the likelihood for a
single training example with

label y =1; we want this value to
be as high as possible

=

A� �� �
1

σ (hV)
�

B� �� �
σ (hV) � (1 � σ (hV)) �

C����
h

= (1 � σ (hV))h
= (1 � ŷ)h

=

A� �� �
� log (σ (hV))

�σ (hV)

B� �� �
�σ (hV)

�hV

C����
�hV
�V

Chain rule

• Tremendous flexibility on design choices (exchange feature
engineering for model engineering)

• Articulate model structure and use the chain rule to derive parameter
updates.

Neural networks

x1

h1

x2

x3

h2

y

Neural network structures

Output one real value; sigmoid function
for output gives single probability

between 0 and 1

1

x1

h1

x2

x3

h2

y

Neural network structures

y

y

1

0

0

Multiclass: output 3 values, only one = 1 in training data;
softmax function for output gives probability between 0 and
1 for each class (all class probabilities sum to 1); classes

compete with each other.

x1

h1

x2

x3

h2

y

Neural network structures

output 3 values, several = 1 in training data; sigmoid
function for each output gives probability of presence of
that label; classes do not compete with each other since

multiple can be present together.

y

y

1

1

0

nsubj_walks

dobj_hits

nsubj_says

glad

happy

sad

Regularization

• Increasing the number of parameters = increasing the possibility for
overfitting to training data

Regularization

• L2 regularization: penalize W and V for being too large

• Dropout: when training on a <x,y> pair, randomly remove some node and
weights.

• Early stopping: Stop backpropagation before the training error is too
small.

Deeper networks

x1

h1

x2

x3

h2 y

W1 V

x3

h2

h2

h2

W2

Talk to your neighbor!

Densely
connected layerx1

x2

x3

x4

x5

x6

x7

h1

h2

h2

W

W

x

h

h = �(xW)

Convolutional networks

• With convolution networks, the same operation (i.e., the same set of
parameters) is applied to different regions of the input

2D Convolution

0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0

blurring

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
https://docs.gimp.org/en/plug-in-convmatrix.html

1D Convolution

0 1 3 -1 4 2 0

convolution K

x

1/3 1/3 1/3

1⅓ 1 2 1⅔ 2

-1

1.5

4

0
1.5

3

h1

h4

h2

h3

h5

Convolutional
networksx1

x2

x3

x4

x5

x6

x7

W1

x

h1 = �(x1W1 + x2W2 + x3W3)

I

hated

it

I

really

hated

it

h1=f(I, hated, it)

h3=f(it, I, really)

h2=f(hated, it, I)

h4=f(I, really, hated)

h5=f(really, hated, it)

W2

W3

Parameters

Input

Indicator vector

• Every token is a V-dimensional vector
(size of the vocab) with a single 1
identifying the word

vocab item indicator

a 0

aa 0

aal 0

aalii 0

aam 0

aardvark 1

aardwolf 0

aba 0

h1

x1

x2

x3

x4

x5

x6

x7

Wx

h1 = �(x1W1 + x2W2 + x3W3)

x1

x2

x3

1

1

1

3.1

-2.7

1.4

-0.7

-1.4

9.2

-3.1

-2.7

1.4

0.1

0.3

-0.4

-2.4

-4.7

5.7

W1

W2

W3

h1

x1

x2

x3

x4

x5

x6

x7

For indicator vectors, we’re just adding
these numbers together

h1 = �(W1,xid
1

+ W2,xid
2

+ W3,xid
3

)

(Where xnid specifies the location of the 1 in
the vector — i.e., the vocabulary id)

Wx

x1

x2

x3

1

1

1

3.1

-2.7

1.4

-0.7

-1.4

9.2

-3.1

-2.7

1.4

0.1

0.3

-0.4

-2.4

-4.7

5.7

W1

W2

W3

h1

x1

x2

x3

x4

x5

x6

x7

For dense input vectors (e.g.,
embeddings), full dot product

Wx

x1

x2

x3

0.4

0.8

1.2

-1.3

0.4

0.2

-5.3

-1.2

5.3

0.4

2.6

2.7

-3.2

6.2

1.9

3.1

-2.7

1.4

-0.7

-1.4

9.2

-3.1

-2.7

1.4

0.1

0.3

-0.4

-2.4

-4.7

5.7

W1

W2

W3

h1 = �(x1W1 + x2W2 + x3W3)

Pooling7

3

1

9

2

1

0

5

3

• Down-samples a layer by selecting a
single point from some set

• Max-pooling selects the largest value

7

9

5

Global pooling7

3

1

9

2

1

0

5

3

• Down-samples a layer by selecting a
single point from some set

• Max-pooling over time (global max
pooling) selects the largest value over
an entire sequence

• Very common for NLP problems.

9

Convolutional
networksx1

x2

x3

x4

x5

x6

x7

1

10

2

-1

5

10

max poolingconvolution

This defines one filter.

x1

x2

x3

x4

x5

x6

x7

1

1

1

x1

x2

x3

Wa Wb Wc Wd

We can specify multiple filters; each
filter is a separate set of parameters to

be learned

h1 = �(x�W) � R4

• With max pooling, we select a single number for each filter over all tokens

• (e.g., with 100 filters, the output of max pooling stage = 100-dimensional
vector)

• If we specify multiple filters, we can also scope each filter over different
window sizes

Convolutional networks

Zhang and Wallace 2016, “A Sensitivity Analysis of
(and Practitioners’ Guide to) Convolutional Neural

Networks for Sentence Classification”

CNN as important ngram
detector

Higher-order ngrams are much more
informative than just unigrams (e.g., “i
don’t like this movie” [“I”, “don’t”, “like”,
“this”, “movie”])

We can think about a CNN as
providing a mechanism for detecting
important (sequential) ngrams without
having the burden of creating them as
unique features

unique types

unigrams 50921

bigrams 451,220

trigrams 910,694

4-grams 1,074,921

Unique ngrams (1-4) in Cornell movie review dataset

Logistics
• Quiz 1 is due tonight (11:59 pm)

• Quiz 2 will be out this Friday (due next Monday Feb 5).

• Homework 1 is out & due next Tuesday, Feb 6 (11:59 pm)

• Homework 2 will be out early next week.

• Next Lecture: Text Classification with Contextual Embedding, BERT, etc.

