Natural Language Processing

Info 159/259
Lecture 18: Information Extraction (April 1, 2024)

Many slides \& instruction ideas borrowed from:
David Bamman, Dan Jurafsky \& Ruben Izquirdo

Logistics

- HW4, Exam2 \& HW5 are being graded.
- AP2: due next Tuesday (April 9)
- 259 Mid-project report due next Thursday (April 11)
- Quiz 8 will be out this Friday afternoon (due Monday night).

Information extraction

Unstructured Web Text

 Structured Sequences

LEARN TO INVEST

Don't know where to start? Sign up for the Investing Basics newsletter.

SEC Probing Tesla CEO Musk's Tweets: Reports

By Deborah DSouza |Updated August 9, 2018-4:47 AM EDT
On Tuesday, Tesla Inc. (TSLA) CEO Elon Musk made the dramatic announcement that he was considering taking Tesla private for $\$ 420$ a share on Twitter. In an email sent to Tesla employees posted on the company's official blog, Musk explained that he is mulling taking the firm private to protect it from short sellers and wild swings in stock prices. However, the email didn't provide any details regarding financing. (See also: What if Tesla Goes Private?)

Bernie Sanders Drops Out of 2020
 Democratic Race for President

-

By Sydney Ember

April 8, 2020

Senator Bernie Sanders of Vermont ended his presidential candidacy on Wednesday, concluding a quest that elevated him as a standard-bearer of American liberalism and clearing the way for a general election between the presumptive Democratic nominee, Joseph R. Biden Jr., and President Trump at a time of national crisis.

https://en.wikipedia.org/wiki/Pride_and_Prejudice

Information extraction

- Named entity recognition
- Entity linking
- Relation extraction

Named entity recognition

[tim cook]per is the ceo of [apple]org

- Identifying spans of text that correspond to typed entities

Named entity recognition

Type	Tag	Sample Categories	Example sentences
People	PER	people, characters	Turing is a giant of computer science.
Organization	ORG	companies, sports teams	The IPCC warned about the cyclone.
Location	LOC	regions, mountains, seas	The Mt. Sanitas loop is in Sunshine Canyon.
Geo-Political	GPE	countries, states, provinces	Palo Alto is raising the fees for parking.
Entity			
Facility	FAC	bridges, buildings, airports	Consider the Golden Gate Bridge.
Vehicles	VEH	planes, trains, automobiles	It was a classic Ford Falcon.

Figure 17.1 A list of generic named entity types with the kinds of entities they refer to.

Named entity recognition

protein

- GENIA corpus of MEDLINE abstracts (biomedical)
cell line
cell type
We have shown that [interleukin-1] protein ([IL-1] protein) and [IL-2]protein control [IL-2 receptor alpha (IL-2R alpha) gene]dna transcription in [CD4-CD8- murine T lymphocyte precursors]cell LINE

BIO notation

B-PERS I-PERS 0000 B-ORG
 tim cook is the ceo of apple

- Beginning of entity
- Inside entity
- Outside entity
[tim cook] PER is the ceo of [apple] org

Named entity recognition

B-PER B-PER

After he saw Harry Tom went to the store

Fine-grained NER

Fine-grained NER

WordNet Search - 3.1
 - WordNet home page - Glossary - Help

Word to search for: Bertolt Brecht Search WordNet
Display Options: (Select option to change) \hat{v} Change
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations Display options for sense: (gloss) "an example sentence"

Noun

- S: (n) Brecht, Bertolt Brecht (German dramatist and poet who developed a style of epic theater (1898-1956))
- instance
- S: (n) dramatist, playwright (someone who writes plays)
- S: (n) poet (a writer of poems (the term is usually reserved for writers of good poetry))

Entity recognition

Person	... named after [the daughter of a Mattel co-founder] .
Organization	[The Russian navy] said the submarine was equipped with 24 missiles
Location	Fresh snow across [the upper Midwest] on Monday, closing schools
GPE	The [Russian] navy said the submarine was equipped with 24 missiles
Facility	Fresh snow across the upper Midwest on Monday, closing [schools]
Vehicle	The Russian navy said [the submarine] was equipped with 24 missiles
Weapon	The Russian navy said the submarine was equipped with [24 missiles]
ACE entity categories https://www.Idc.upenn.edu/sites/www.Idc.upenn.edu/files/english-entities-guidelines-v6.6.pdf	

Named entity recognition

- Most named entity recognition datasets have flat structure (i.e., non-hierarchical labels).
\checkmark [The University of California]org
$\boldsymbol{*}$ [The University of [California]gPE]org
- Mostly fine for named entities, but more problematic for general entities:
[[John] per's mother] $]_{\text {per }}$ said ...

Nested NER

named	after	the	daughter	of	a	Mattel	co-founder
					B-ORG		
					B-PER	I-PER	I-PER
		B-PER	I-PER	I-PER	I-PER	I-PER	I-PER

Sequence labeling

$$
\begin{aligned}
& x=\left\{x_{1}, \ldots, x_{n}\right\} \\
& y=\left\{y_{1}, \ldots, y_{n}\right\}
\end{aligned}
$$

- For a set of inputs x with n sequential time steps, one corresponding label y_{i} for each x_{i}
- Model correlations in the labels y.

Sequence labeling (methods)

- Hidden Markov Model (HMM)
- Maximum Entropy Markov Model (MEMM)
- Conditional Random Field (CRF)
- Another discriminative model with better handling of label dependency
- Decoding (finding the optimal label sequence): Viterbi

Sequence labeling

- Feature-based models (MEMM, CRF)

```
identity of }\mp@subsup{w}{i}{}\mathrm{ , identity of neighboring words
embeddings for }\mp@subsup{w}{i}{}\mathrm{ , embeddings for neighboring words
part of speech of wi, part of speech of neighboring words
base-phrase syntactic chunk label of wi}\mp@subsup{w}{i}{}\mathrm{ and neighboring words
presence of }\mp@subsup{w}{i}{}\mathrm{ in a gazetteer
wi}\mathrm{ contains a particular prefix (from all prefixes of length }\leq4
wi}\mathrm{ contains a particular suffix (from all suffixes of length }\leq4\mathrm{ )
wi}\mp@subsup{w}{i}{}\mathrm{ is all upper case
word shape of }\mp@subsup{w}{i}{}\mathrm{ , word shape of neighboring words
short word shape of wi,}\mathrm{ , short word shape of neighboring words
presence of hyphen
```

Figure 17.5 Typical features for a feature-based NER system.

Gazetteers

- List of place names; more generally, list of names of some typed category
- GeoNames (GEO), US SSN (PER), Getty Thesaurus of Geographic Placenames, Getty Thesaurus of Art and Architecture

Bidirectional RNN

S-PER

BiLSTM for each word; concatenate final state of forward LSTM, backward LSTM, and word embedding as representation for a word.

Character CNN for each word; concatenate character CNN output and word embedding as representation for a word.

Chu et al. (2016), "Named Entity Recognition with
Bidirectional LSTM-CNNs"
max pooling
convolution
character embeddings

Some transitions (e.g. O I-PER) are impossible should never be predicted in NER (or any task that uses BIO notation)

Model	POS		NER					
	Dev	Test		Dev		Test		
	Acc.	Acc.	Prec.	Recall	F1	Prec.	Recall	F1
	96.56	96.76	92.04	89.13	90.56	87.05	83.88	85.44
BLSTM	96.88	96.93	92.31	90.85	91.57	87.77	86.23	87.00
BLSTM-CNN	97.34	97.33	92.52	93.64	93.07	88.53	90.21	89.36
BRNN-CNN-CRF	97.46	97.55	94.85	94.63	94.74	91.35	91.06	91.21

Ma and Hovy (2016), "End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF"

Evaluation

- We evaluate NER with precision/recall/F1 over typed chunks.

Evaluation

	1	2	3	4	5	6
	tim	cook	is	the	CEO	of
gold	B-PER	I-PER	O	O	O	O
system	B-PER	O	O	O ORG		

<start, end, type>

	gold	system	
Precision	$1 / 3$		$<1,2$, PER $>$

Entity linking

Entity linking

- Task: Given a database of candidate referents, identify the correct referent for a mention in context.

Text	True wikipedia page
Hornets owner Michael Jordan thinks having one or two "su- perteams" is a detriment to the NBA because the other 28 teams "are going to be garbage."	wiki/Michael_Jordan
In 2001, Michael Jordan and others resigned from the Editorial Board of Machine Learning.	wiki/Michael_I._Jordan
The stars are aligning for leading man Michael Jordan, who just signed on for a new film, according to Variety.	wiki/Michael_B._Jordan
Michael Jordan played in 1,072 regular-season games in his 15-- season career	wiki/Michael_Jordan

Michael Jordan (disambiguation)

From Wikipedia, the free encyclopedia

Michael Jordan (born 1963) is an American basketball player.
Michael or Mike Jordan may also refer to:

People [edit]

Sports [edit]

- Michael Jordan (footballer) (born 1986), English goalkeeper
- Mike Jordan (racing driver) (born 1958), English racing driver
- Mike Jordan (baseball, born 1863) (1863-1940), baseball player
- Mike Jordan (cornerback) (born 1992), American football cornerback
- Michael-Hakim Jordan (born 1977), American professional basketball player
- Michal Jordán (born 1990), Czech ice hockey player

Other people [edit]

- Michael B. Jordan (born 1987), American actor
- Michael Jordan (insolvency baron) (born 1931), English businessman
- Michael Jordan (Irish politician), Irish Farmers' Party TD from Wexford, 1927-1932
- Michael I. Jordan (born 1956), American researcher in machine learning and artificial intelligence
- Michael H. Jordan (1936-2010), American executive for CBS, PepsiCo, Westinghouse
- Michael Jordan (mycologist), English mycologist

Learning to rank

- Entity linking is often cast as a learning to rank problem: given a mention x , some set of candidate entities $y(\mathrm{x})$ for that mention, and context c , select the highest scoring entity from that set.

$$
\hat{y}=\arg \max _{y \in \mathscr{Y}(x)} \Psi(y, x, c)
$$

Learning to rank

- We learn the parameters of the scoring function by minimizing the ranking loss

$$
\ell(\hat{y}, y, x, c)=\max (0, \Psi(\hat{y}, x, c)-\Psi(y, x, c)+\ldots)
$$

Learning to rank

Some scoring function over the mention
x , candidate y , and context c

$\Psi(y, x, c)$

feature $=f(x, y, c)$
string similarity between x and y
popularity of y
NER type $(x)=$ type(y)
Pand

cosine similarity between c and Wikipedia page for y

$$
\Psi(y, x, c)=f(x, y, c)^{\top} \beta
$$

Neural learning to rank

Parameters measuring the compatibility of the candidate and mention

Parameters measuring the compatibility of
the candidate and context

$$
\Psi(y, x, c)=v_{y}^{\top} \Theta^{(x, y)} x+v_{y}^{\top} \Theta^{(y, c)} c
$$

> Embedding for mention

Learning to rank

- We learn the parameters of the scoring function by minimizing the ranking loss; take the derivative of the loss and backprop using SGD.

$$
\ell(\hat{y}, y, x, c)=\max (0, \Psi(\hat{y}, x, c)-\Psi(y, x, c)+1)
$$

Entity linking

- Task: Given a database of candidate referents, identify the correct referent for a mention in context.

Text	True wikipedia page
Hornets owner Michael Jordan thinks having one or two "su- perteams" is a detriment to the NBA because the other 28 teams "are going to be garbage."	wiki/Michael_Jordan
In 2001, Michael Jordan and others resigned from the Editorial Board of Machine Learning.	wiki/Michael_I._Jordan
The stars are aligning for leading man Michael Jordan, who just signed on for a new film, according to Variety.	wiki/Michael_B._Jordan
Michael Jordan played in 1,072 regular-season games in his 15-- season career	wiki/Michael_Jordan

Relation extraction

The Big Sleep is a 1946 film noir directed by Howard Hawks, ${ }^{[2][3]}$ the first film version of Raymond Chandler's 1939 novel of the same name. The film stars Humphrey Bogart as private detective Philip Marlowe and Lauren Bacall as Vivian Rutledge in a story about the "process of a criminal investigation, not its results. "[4] William Faulkner, Leigh Brackett and Jules Furthman cowrote the screenplay.

subject	predicate	object
The Big Sleep	directed_by	Howard Hawks
The Big Sleep	stars	Humphrey Bogart
The Big Sleep	stars	Lauren Bacall
The Big Sleep	screenplay_by	William Faulkner
The Big Sleep	screenplay_by	Leigh Brackett
The Big Sleep	screenplay_by	Jules Furthman

Relation extraction

Figure 17.9 The 17 relations used in the ACE relation extraction task.

Relation extraction

Entity	Relation	Entity
Injury	disrupts	Physiological Function
Bodily Location	location-of	Biologic Function
Anatomical Structure	part-of	Organism
Pharmacologic Substance	causes	Pathological Function
Pharmacologic Substance	treats	Pathologic Function

Wikipedia Infoboxes

The Big Sleep is a 1946 film noir directed by Howard Hawks, ${ }^{[2][3]}$ the first film version of Raymond Chandler's 1939 novel of the same name. The film stars Humphrey Bogart as private detective Philip Marlowe and Lauren Bacall as Vivian Rutledge in a story about the "process of a criminal investigation, not its results." ${ }^{[4]}$ William Faulkner, Leigh Brackett and Jules Furthman co-wrote the screenplay.

A remake starring Robert Mitchum as Philip Marlowe was released in 1978. This was the second film in three years featuring Mitchum as Marlowe. The remake was arguably more faithful to the novel, possibly due to fewer restrictions in 1978 on what could be portrayed on screen, however, it was far less successful than the original 1946 version. In 1997, the U.S. Library of Congress deemed the film "culturally, historically, or aesthetically significant," and added it to the National Film Registry.

The Big Sleep	
Theatrical release lobby card	
Directed by	Howard Hawks
Produced by	Howard Hawks
Screenplay by	William Faulkner Leigh Brackett Jules Furthman
Based on	The Big Sleep by Raymond Chandler
Starring	Humphrey Bogart Lauren Bacall
Music by	Max Steiner
Cinematography	Sidney Hickox
Edited by	Christian Nyby
Distributed by	Warner Bros.
Release date	August 23, 1946 (United States)
Running time	114 minutes (released cut) 116 minutes (re-released original cut)

Regular expressions

- Regular expressions are precise ways of extracting high-precision relations
- " NP_{1} is a film directed by NP_{2} " \rightarrow directed_by $\left(\mathrm{NP}_{1}\right.$, NP_{2})
- " NP_{1} was the director of NP_{2} " \rightarrow directed_by $\left(\mathrm{NP}_{2}, \mathrm{NP}_{1}\right)$

Hearst patterns

\(\left.\begin{array}{|c|c|}\hline pattern \& sentence

\hline NP\left\{, \mathrm{NP}^{\star}\{,\} (and|or) other \mathrm{NP}_{\mathrm{H}}\right. \& temples, treasuries, and other important civic

buildings\end{array}\right]\)	red algae such as Gelidium

Supervised relation extraction

[The Big Sleep]m1 is a 1946 film noir directed by [Howard Hawks]m2, the first film version of Raymond Chandler's 1939 novel of the same name.

feature(m1, m2)
headwords of $\mathrm{m} 1, \mathrm{~m} 2$
bag of words in $\mathrm{m} 1, \mathrm{~m} 2$
bag of words between $\mathrm{m} 1, \mathrm{~m} 2$
named entity types of $\mathrm{m} 1, \mathrm{~m} 2$
syntactic path between $\mathrm{m} 1, \mathrm{~m} 2$

Supervised relation extraction

[The Big Sleep]m1 is a 1946 film noir directed by [Howard Hawks]m2, the first film version of Raymond Chandler's 1939 novel of the same name.

[The Big Sleep] ${ }_{m 1} \leftarrow n$ nsubjpass directed \rightarrow obl:agent [Howard Hawks]m2,

$$
\mathrm{m} 1 \leftarrow \text { nsubjpass } \leftarrow \text { directed } \rightarrow \text { obl:agent } \rightarrow \mathrm{m} 2
$$

Supervised relation extraction

function FINDRELATIONS(words) returns relations

```
relations }\leftarrow\mathrm{ nil
entities }\leftarrow\mathrm{ FINDENTITIES(words)
forall entity pairs }\langlee1,e2\rangle\mathrm{ in entities do
    if RELATED?(e1,e2)
        relations }\leftarrow\mathrm{ relations +CLASSIFYRELATION (e1,e2)
```

Figure 17.13 Finding and classifying the relations among entities in a text.

Neural RE

- To encode relative position to entities, we'll add positional embeddings to our representation of each word - the distance from each word w in the sentence to m 1 and m 2

dist from m1	0	1	2	3	4	5	6	7	8
dist from m 2	-8	-7	-6	-5	-4	-3	-2	-1	0
	[The Big Sleep]	is	a	1946 film	noir	directed	by	[Howard Hawks]	

- 0 here uniquely identifies the head and tail of the relation; other position indicate how close the word is (maybe closer words matter more)

Neural RE

Each position then has an embedding

-4	2	-0.5	1.1	0.3	0.4	-0.5
-3	-1.4	0.4	-0.2	-0.9	0.5	0.9
-2	-1.1	-0.2	-0.5	0.2	-0.8	0
-1	0.7	-0.3	1.5	-0.3	-0.4	0.1
0	-0.8	1.2	1	-0.7	-1	-0.4
1	0	0.3	-0.3	-0.9	0.2	1.4
2	0.8	0.8	-0.4	-1.4	1.2	-0.9
3	1.6	0.4	-1.1	0.7	0.1	1.6
4	1.2	-0.2	1.3	-0.4	0.3	-1.0

Distant supervision

- It's uncommon to have labeled data in the form of <sentence, relation> pairs
sentence
[The Big Sleep] ${ }_{m 1}$ is a 1946 film noir directed by
[Howard Hawks]m2, the first film version of Raymond
Chandler's 1939 novel of the same name.
relations
directed_by(The Big Sleep, Howard Hawks)

Distant supervision

- More common to have knowledge base data about entities and their relations that's separate from text.
- We know the text likely expresses the relations somewhere, but not exactly where.

Wikipedia Infoboxes

The Big Sleep is a 1946 film noir directed by Howard Hawks, ${ }^{[2][3]}$ the first film version of Raymond Chandler's 1939 novel of the same name. The film stars Humphrey Bogart as private detective Philip Marlowe and Lauren Bacall as Vivian Rutledge in a story about the "process of a criminal investigation, not its results." ${ }^{[4]}$ William Faulkner, Leigh Brackett and Jules Furthman co-wrote the screenplay.

A remake starring Robert Mitchum as Philip Marlowe was released in 1978. This was the second film in three years featuring Mitchum as Marlowe. The remake was arguably more faithful to the novel, possibly due to fewer restrictions in 1978 on what could be portrayed on screen, however, it was far less successful than the original 1946 version. In 1997, the U.S. Library of Congress deemed the film "culturally, historically, or aesthetically significant," and added it to the National Film Registry.

The Big Sleep	
Theatrical release lobby card	
Directed by	Howard Hawks
Produced by	Howard Hawks
Screenplay by	William Faulkner Leigh Brackett Jules Furthman
Based on	The Big Sleep by Raymond Chandler
Starring	Humphrey Bogart Lauren Bacall
Music by	Max Steiner
Cinematography	Sidney Hickox
Edited by	Christian Nyby
Distributed by	Warner Bros.
Release date	August 23, 1946 (United States)
Running time	114 minutes (released cut) 116 minutes (re-released original cut)

Relation name	Size	Example
/people/person/nationality	281,107	John Dugard, South Africa
/location/location/contains	253,223	Belgium, Nijlen
/people/person/profession	208,888	Dusa McDuff, Mathematician
/people/person/place_of_birth	105,799	Edwin Hubble, Marshfield
/dining/restaurant/cuisine	86,213	MacAyo’s Mexican Kitchen, Mexican
/business/business_chain/location	66,529	Apple Inc., Apple Inc., South Park, NC
/biology/organism_classification_rank	42,806	Scorpaeniformes, Order
/film/film/genre	40,658	Where the Sidewalk Ends, Film noir
/film/film/language	31,103	Enter the Phoenix, Cantonese
/biology/organism_higher_classification	30,052	Calopteryx, Calopterygidae
/film/film/country	27,217	Turtle Diary, United States
/film/writer/film	23,856	Irving Shulman, Rebel Without a Cause
/film/director/film	23,539	Michael Mann, Collateral
/film/producer/film	22,079	Diane Eskenazi, Aladdin
/people/deceased_person/place_of_death	18,814	John W. Kern, Asheville
/music/artist/origin	18,619	The Octopus Project, Austin
/people/person/religion	17,582	Joseph Chartrand, Catholicism
/book/author/works_written	17,278	Paul Auster, Travels in the Scriptorium
/soccer/football_position/players	17,244	Midfielder, Chen Tao
/people/deceased_person/cause_of_death	16,709	Richard Daintree, Tuberculosis
/book/book/genre	16,431	Pony Soldiers, Science fiction
/film/film/music	14,070	Stavisky, Stephen Sondheim
/business/company/industry	13,805	ATS Medical, Health care

Table 2: The 23 largest Freebase relations we use, with their size and an instance of each relation.

Distant supervision

mayor(Maynard Jackson, Atlanta)

Elected mayor of Atlanta in 1973, Maynard Jackson...

Atlanta's airport will be renamed to honor Maynard Jackson, the city's first Black mayor

Born in Dallas, Texas in 1938, Maynard Holbrook Jackson, Jr. moved to Atlanta when he was 8.

mayor(Fiorello LaGuardia, New York)

Fiorello LaGuardia was Mayor of New York for three terms...

Fiorello LaGuardia, then serving on the New York City Board of Aldermen...

Distant supervision

- For feature-based models, we can represent the tuple <m1, m2> by aggregating together the representations from all the sentences they appear in

Distant supervision

[The Big Sleep]m1 is a 1946 film noir directed by [Howard Hawks]m2, the first film version of Raymond Chandler's 1939 novel of the same name.
[Howard Hawks]m2 directed the [The Big Sleep]m1

feature $(\mathrm{m} 1, \mathrm{~m} 2)$	value (e.g., normalized over all sentences)
"directed" between $\mathrm{m} 1, \mathrm{~m} 2$	0.37
"by" between $\mathrm{m} 1, \mathrm{~m} 2$	0.42
$\mathrm{~m} 1 \leftarrow$ nsubjpass \leftarrow directed \rightarrow obl:agent $\rightarrow \mathrm{m} 2$	0.13
$\mathrm{~m} 2 \leftarrow$ nsubj \leftarrow directed \rightarrow obj $\rightarrow \mathrm{m} 2$	0.08

Distant supervision

- Discovering Hearst patterns from distant supervision using WordNet (Snow et al. 2005)

pattern	sentence
$N P_{H}$ like NP	Many hormones like leptin...
$N P_{H}$ called NP	a markup language called XHTML
$N P$ is a NPH	Ruby is a programming language...
$N P, a N P_{H}$	IBM, a company with a long...

Multiple Instance Learning

- Labels are assigned to a set of sentences, each containing the pair of entities m 1 and m 2 ; not all of those sentences express the relation between m 1 and m 2 .

Attention

- Let's incorporate structure (and parameters) into a network that captures which sentences in the input we should be attending to (and which we can ignore).

sentence
encoding
[The Big Sleep]mi is a 1946 film noir directed by [Howard Hawks]m2
[Howard Hawks]m2 directed [The Big Sleep]m1

After [The Big Sleep]m1 [Howard Hawks]m2 married Dee Hartford

Information Extraction

- Named entity recognition
- Entity linking
- Relation extraction
- Template filling
- Event detection
- Event coreference
- ...

