Natural Language Processing

Info 159/259

Many slides & instruction ideas borrowed from:
David Bamman, Greg Durrett & Dan Jurafsky

Logistics

« Homework 4 is due this Friday 3/8 (start now if you haven't already)
e Open Al APl keys
* Quiz 6 will be out on Friday afternoon (due Monday)

* This week: Syntax & Parsing

Context-free grammar

A context-free grammar defines how symbols in a language combine to
form valid structures

NP - Det Nominal
NP - ProperNoun
Nominal - Noun | Nominal Noun
Det - a|the
terminals

Noun - flight

Constituents

Every internal node is a phrase

my pajamas

in my pajamas

elephant in my pajamas

an elephant in my pajamas

shot an elephant in my pajamas

| shot an elephant in my pajamas

Each phrase could be replaced by

another of the same type of constituent

PCFG

* Probabilistic context-free grammar: each production is also associated
with a probability.

* This lets us calculate the probability of a parse for a given sentence; for a
given parse tree | for sentence S comprised of n rules from R (each A —

B):

n

P(T,5) =[] P8 A)

1

PCFG

N Finite set of non-terminal symbols

2 Finite alphabet of terminal symbols

Set of production rules, each
R A—Q

S Start symbol

NP, VP, S

the, dog, a

S — NP VP
Noun — dog

NP

N

VP

P(NP VP | S)

P(NP VP | S)
S x P(Nominal | NP)

N

NP VP

Nominal

P(NP VP | S)
S x P(Nominal | NP)

/ \ x P(Pronoun | Nominal)

NP VP

Nominal
|

Pronoun

P(NP VP | S
S x P(Nominal | NP

)
)
x P(Pronoun | Nominal)

NP VP x P(I | Pronoun

Nominal
|

Pronoun

|

T

/

Nominal

Pronoun

|

P(NP VP | S
x P(Nominal | NP

xP(Pronoun | Nominal
P(I| Pronoun

\ xPVPPP|VP

— — A ~— —

P(NP VP | S
x P(Nominal | NP

/ \ xP(Pronoun | Nominal

P(I| Pronoun

, / \ xPVPPP|VP

Nominal

| / \ P(Verb NP | VP)
Pronoun Verb NP

|

— — A ~— —

P(NP VP | S
x P(Nominal | NP

/ \ xP(Pronoun | Nominal

P(I| Pronoun

, / \ xPVPPP|VP

Nominal

| / \ ><P(Verb NP | VP)
Pronoun Verb NP X P(shot | Verb)

][f‘ﬂh”‘[

— — A ~— —

P(NP VP | S
x P(Nominal | NP

/ \ xP(Pronoun | Nominal

P(I| Pronoun

, / \ xPVPPP|VP

— — A ~— —

Nominal
| / \ ><P(Verb NP | VP)
Pronoun Verb NP x P(shot | Verb)
| | / \ « P(Det Nominal | NP)

I shot Det Nominal

P(NP VP | S
x P(Nominal | NP

/ \ xP(Pronoun | Nominal

P(I| Pronoun

, / \ xPVPPP|VP

— — A ~— —

Nominal
| / \ ><P(Verb NP | VP)
Pronoun Verb NP x P(shot | Verb)
| | / \ « P(Det Nominal | NP)
)

I shot D‘et Nominal x P(an | Det

dn

TN

Nominal

/

Pronoun Verb

|

f‘ﬂh”‘[

/\

\
NP
/ \
Det Nominal

an Noun

P(NP VP | S
x P(Nominal | NP

xP(Pronoun | Nominal

P(I| Pronoun
xP(VP PP | VP

><P(Verb NP | VP
x P(shot | Verb

x P(Det Nominal | NP

/\

/

Nominal

/\

Pronoun Verb

|

NP
| / \

P(NP VP | S
x P(Nominal | NP

xP(Pronoun | Nominal

\

P(I | Pronoun
xP(VP PP | VP

><P(Verb NP | VP
x P(shot | Verb

x P(Det Nominal | NP

shot Det Nominal

an Noun

elephar

11

x P(Noun | Nominal
x P(elephant | Noun

S

T

NP VP
, / \ o
Nominal VP ~
| VRN /

NP
Pronoun Verb NP Prep
/ \ | / \

| | : Nominal
I shot Det Nominal Det

my Noun
dan Noun - |

n |

P(T,S) = HP(ﬁ | A) elephant

1

pajamas

PCFGs

A PCFG gives us a mechanism for assigning scores (here,
probabilities) to different parses for the same sentence.

* But we often care about is finding with the
highest probability.

Context-free grammar

N Finite set of non-terminal symbols NP, VP, S

2 Finite alphabet of terminal symbols the, dog, a

Set of production rules, each
R A—Q
BeN

NP — DT JJ NN
Noun — dog

S Start symbol

Chomsky Normal Form (CNF)

N Finite set of non-terminal symbols NP, VP, S

2 Finite alphabet of terminal symbols the, dog, a

Set of production rules, each
A—Q S—- NPVP
Noun — dog

S Start symbol

Chomsky Normal Form (CNF)

* Any CFG can be converted into weakly equivalent CNF (recognizing
the same set of sentences as existing in the grammar but differing in
their derivation).

NP
NP = DT JJ NN DmN
NP
NP —= X NN P
X = DT JJ X NN

DT 1)

S

VP

VP
Nominal

PP
NP

NP

i 1 11

i

NP VP

VBD NP
VP PP
Nominal PP

IN NP
DT NN

PRP$ Nominal

| shot an elephant in

VBD
DT
NN

NNS
PRP
PRP$

my pajamas

{

1

T

shot

an | my
elephant
pajamas
|

my

in

S
VP
VP

Nominal

Nominal
PP

NP

NP

NP

NP VP
VBD NP
VP PP
Nominal PP

pajamas | elephant | |
IN NP

DT NN

pajamas | elephant | |

PRP$ Nominal

| shot an elephant in

VBD — shot

DT — an|my

PRP — |
PRP$ — my
IN — in
my pajamas

CKY

* Cocke-Kasami-Younger algorithm (also CYK) for parsing from a
grammar expressed in CNF.

e Kasami (1965)
* Younger (1967)
* Cocke and Schwartz (1970)

* Bottom-up dynamic programming:

| shot an elephant in my pajamas
1 2 3 4 5 7

S

VP

VP
Nominal
Nominal
PP

NP

NP

NP

NP, PRP

[0.1]

NP VP

VBD NP

VP PP

Nominal PP

pajamas | elephant | |
IN NP

DT NN

pajamas | elephant | |

PRP$ Nominal

shot

VBD
[1.2]

VBD
DT
PRP
PRP$

an

shot

an | my

my

elephant

NP, NN
[3,4]

in my pajamas
IN
[4.,5]
PRP$
[5,6]
NNS

[6,7]

NP, PRP
[0,1]

Each cell i,j keeps track of all
phrase types that can be

formed from all words from
position i through position |

shot

VBD
[1.2]

an

DT
[2,3]

elephant

NP, NN
[3,4]

in my pajamas
IN
[4.,5]
PRP$
[5,6]
NNS

[6.7]

shot an elephant in my pajamas

NP, PRP
[0,1]

VBD
[1.2]

DT
[2,3]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5.6]

What phrases can be formed from

“shot an elephant in”
NNS

[6.7]

NP, PRP
[0,1]

shot an

VBD
[1.2]

DT
[2,3]

What phrases can be formed from

‘| shot an elephant in my
pajamas”

elephant

NP, NN
[3,4]

in my pajamas

IN
[4,5]

PRP$
[5.6]

NNS
[6.7]

CNF

* In CNF, each non-terminal generates two non-terminals

S — NPVP
[s [np 1] [ve shot an elephant in my pajamas]]
 |f the left-side non-terminal (S) spans tokens I-|, the right side (NP VP)

must also span I-|, and there must be a single position k that
separates them.

shot

NP, PRP
[0,1]

VBD
[1.2]

Does any rule generate PRP VBD?

i.e., is there any production in our
CFG that generates:
? = PRP VBD

an elephant
DT
[2,3]
NP, NN
[3,4]

in my pajamas
IN
[4.,5]
PRP$
[5,6]
NNS

[6.7]

NP, PRP
[0,1]

Does any rule generate

VBD DT?

shot an elephant
@
VBD
[1,2]
DT
[2,3]
NP, NN
[3,4]

in my pajamas
IN
[4.,5]
PRP$
[5,6]
NNS

[6.7]

shot an elephant

NP, PRP >
[0.1]
VBD >
[1.2]
DT
[2.3]
NP, NN
[3.4]

Two possible places look for that

split k

in my pajamas
IN
[4.,5]
PRP$
[5,6]
NNS

[6.7]

shot an elephant in my pajamas

NP, PRP
[0.1]

VBD >
[1.2]

DT

[2,3]

NP, NN
[3.4]
IN
[4.5]
Two possible places look for that ng?

split k

NNS
[6.7]

shot an elephant in my pajamas

NP, PRP
[0.1]

VBD >
[1.2]

DT

[2,3]

NP, NN
[3.4]
IN
[4.5]
Two possible places look for that ng?

split k

NNS
[6.7]

NP, PRP
[0,1]

Does any rule generate

DT NN?

shot an elephant

%] @
VBD
[1.2]
DT
[2,3]
NP, NN
[3.4]

in my pajamas
IN
[4.,5]
PRP$
[5,6]
NNS

[6.7]

shot an elephant in my pajamas

NP, PRP > 5
[0,1]
VBD >
[1.2]
DT NP
[2,3] [2,4]
NP, NN
[3.4]
IN
[4.5]
Two possible places look for that Tf?l;?

split k

NNS
[6.7]

shot

NP, PRP -
[0,1]

VBD
[1.2]

Two possible places look for that

split k

an

elephant

[3.4]

IN
[4,5]

my

PRP$
[5,6]

pajamas

NNS
[6.7]

shot

NP, PRP -
[0,1]

VBD
[1.2]

Three possible places look for that

split k

an

DT
[2,3]

elephant

VP
[1.4]

NP
[2.4]

NP, NN
[3,4]

in my pajamas
IN
[4.,5]
PRP$
[5,6]
NNS

[6.7]

shot an elephant in my

NP, PRP >
[0,1]

VBD
[1,2] [1,4]

DT NP
[2,3] [2,4]
NP, NN
[3.4]
IN
[4.5]
Three possible places look for that Tf?l;?

split k

pajamas

NNS
[6.7]

shot an elephant in my pajamas

NP, PRP >
[0,1]

VBD
[1,2] [1,4]

DT NP
[2,3] [2,4]
NP, NN
[3.4]
IN
[4.5]
Three possible places look for that Tf?l;?

split k

NNS
[6.7]

shot

NP, PRP -
[0,1]

VBD
[1.2]

Three possible places look for that

split k

an

elephant

in

my pajamas
PRP$
[5,6]

NNS

[6.7]

NP, PRP
[0,1]

shot

VBD
[1.2]

an

DT
[2,3]

elephant in my

[0.4]

NP
[2,4]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

pajamas

NNS
[6.7]

NP, PRP
[0,1]

*elephant in

*an elephant in

*shot an elephant in
*| shot an elephant in

shot an elephant

@ @ S
[0,4]

VBD > VP
[1,2] [1,4]
DT NP

[2,3] [2,4]

NP, NN
[3,4]
*in my

*elephant in my

*an elephant in my

*shot an elephant in my
*| shot an elephant in my

IN
[4,5]

my

PRP$
[5,6]

pajamas

NNS
[6.7]

NP, PRP
[0,1]

shot

VBD
[1.2]

an

elephant

[0.4]

NP
[2,4]

NP, NN
[3,4]

in

IN
[4,5]

my

PRP$
[5,6]

pajamas

NNS
[6.7]

NP, PRP
[0,1]

shot

VBD
[1.2]

an

elephant

[0.4]

NP
[2,4]

NP, NN
[3,4]

in

IN
[4,5]

my

PRP$
[5,6]

pajamas

PP
[4.7]

NNS
[6.7]

NP, PRP
[0,1]

shot

VBD
[1.2]

an

elephant

[0.4]

NP
[2,4]

NP, NN
[3,4]

in

IN
[4,5]

my

PRP$
[5,6]

pajamas

NNS
[6.7]

NP, PRP
[0,1]

shot

VBD
[1.2]

an

DT
[2,3]

elephant

[0.4]

NP
[2,4]

NP, NN
[3,4]

in

IN
[4,5]

my

PRP$
[5,6]

pajamas

NP
[3.7]

NNS
[6.7]

shot an elephant in my pajamas

NP, PRP > § >
[0,1] [0,4]
VBD > VP >
[1,2] [1,4]
DT NP >
[2,3] [2,4] [3,7]
NP, NN > > NP
[3,4] [3,7]
IN > PP
[4,5] [4,7]
PRP$ NP
[5.6] [5,7]
NNS

[6.7]

NP, PRP
[0,1]

shot

VBD
[1.2]

an

DT
[2,3]

elephant

[3.4]

in

IN
[4,5]

my

PRP$
[5,6]

pajamas

[3.7]

PP
[4,7]

NP
[5,7]

NNS
[6.7]

NP, PRP
[0,1]

shot

VBD
[1.2]

an

DT
[2,3]

elephant in my pajamas

S
[0,4]
VP
[1,4]
NP
[2,4]
NP, NN
[3,4]
[4,5] [4,7]
PRP$ NP
[5,6] [5,7]
NNS

[6.7]

NP, PRP
[0,1]

shot

VBD
[1.2]

an

DT
[2,3]

elephant in my pajamas

S @
[0.4]

VP >
[1.4]

NP >
[2,4]

NP, NN >
[3,4]

IN

[4,5]

[5,6] [5,7]

NNS
[6.7]

shot an elephant in my pajamas

NP, PRP > @ S 2
[0,1] [0,4]
VBD > VP >
[1,2] [1,4]
DT NP >
[2,3] [2,4] [3,7]
NP, NN > > NP
3,4] 3,7]
IN > PP
[4,5] [4,7]
PRP$ NP
[5,6] [5,7]
NNS

[6.7]

shot an elephant in my pajamas

NP, PRP
[0,1]

[4,5] [4,7]
PRP$ NP

[5,6] [5,7]

NNS

[6.7]

NP, PRP
[0,1]

shot

VBD
[1.2]

an

elephant

[0.4]

NP
[2,4]

NP, NN
[3,4]

in

IN
[4,5]

my

PRP$
[5,6]

pajamas

VP, VP2
[1.7]

NP
[2,7]

NNS
[6.7]

shot

NP, PRP > >
[0.1]
VBD >
[1.2]
DT
[2.3]

Possibilities:

Sy = NP VP;
S> = NP VP,

? > SPP
? - PRP VP;
? = PRP VP>

elephant

[0.4]

VP
[1.4]

NP
[2.4]

NP, NN
[3,4]

in

IN
[4,5]

my

PRP$
[5,6]

ajamas

VP4, VP2
[1.7]

NP
[2.7]

NP
[3.7]

PP
[4.7]

NP
[5.7]

NNS
[6.7]

shot an elephant in my pajamas

NP, PRP S S S,
! %] @ 1%} %))
[0,1] [0,4] [0,7]
VP1, VP2
VBD > VP . > s
[1.2] [1,4] ,
DT NP o o NP
[2.3] [2,4] [2,7]
NP, NN o . NP
[3,4] [3,7]
IN 2 PP
[4,5] [4,7]
Success! We've recognized a T?';? [15\”;]
total of two valid parses ’ '
NNS

[6.7]

CKY algorithm

function CKY-PARSE(words, grammar) returns table

for j < from 1 to LENGTH(words) do
for all {A|A — words|j] € grammar}
table[j— 1, j]<table[j—1,j]UA
for i <+ from j—2 downto O do
fork<i+1toj—1do
forall {A|A — BC € grammar and B € table[i,k] and C € tablelk, j|}
tableli,j] < tableli,j] U A

131001 W PA] The CKY algorithm.

shot an elephant in my pajamas

NP, PRP S S1, S
’ %) 2 2 @ :
[0,1] [0,4] [0,7]

VP4, VP2

VBD > VP > > 47
[1,2] [1,4]

DT NP > > NP

[2,3] [2,4] [2,7]

NP, NN > > NP

[3,4] [3,7]

IN > PP

[4,5] [4,7]

PRP$ NP

Runtime complexity? [5,6] [5,7]

NNS

[6.7]

CFG

e This use of CKY allows us to:

* check whether a sentence in grammatical in the language
defined by the CFG

* enumerate all possible parses for a sentence

e But it doesn’t tell us on its own which of those possible parses is
most likely.

PCFGs

A PCFG gives us a mechanism for assigning scores (here,
probabilities) to different parses for the same sentence.

* We often care about is finding with the highest
probability.

* We calculate the max probability parse using CKY by storing the
probability of each phrase within each cell as we build it up.

shot
PRP: -3.21
[0,1]
VBD: -3.21
[1.,2]

As in Viterbi, backpointers let
us keep track on the path

through the chart that leads to
the best derivation

n

DT: -3.0
[2.3]

elephant

$-19.2
[0,4]

VP: -14.3
4]

NP: -8.8
[2.4]

NN: -3.5
[3,4]

im‘,\pajamas

S:-35.7
[0,7]

o NP: -24.7
[2,7]
o > NP: -19.4
[3,7]
IN: -2.3 o PP: -13.6
[4.5] VN
PRPS: NP 9.0
-2.12 (5.7]
[5,6] '
NNS: -4.6

/ S@j
L

PRP VBD DT NN IN PRP NNS

| shot an elephant in my pajamas

—ormalisms

Phrase structure grammar Dependency grammar
(Chomsky 1957) (Mel’'€uk 1988; Tesniere 1959; Panini)
S
/\
NP VP shot
/\
! VP PP | elephant shot
PN PN _ _
\' NP P NP in | elephant in
I N N
shot Det N in Det N pajamas my pajamas my

| l l |

an elephant my pajamas

Dependency syntax

* Enables “Who Did What to Whom” kind of analysis for semantics.

e Syntactic structure = , relations between words.

Trees

» A dependency structure is a directed graph)

G = (V,A) consisting of a set of vertices V
and arcs A between them. Typically ! (aeg
constrained to form a - [I \

Book me the morning flight

« Single root vertex with no incoming arcs

» Every vertex has exactly one incoming
arc except root ()

* There is a unique path from the root to
each vertex in V ()

Universal Dependencies

English

Bulgarian

Czech

Swedish

punct
nsubj:pass case
-“ \-/:m”a”"pass \VERB"] F\B‘f/_‘ et~ NouN"] PUNCT
—— ~
cat

chased by the

punct
nsubjpass obl
ex Ll:pass case
mmu PR NvereY mDPS " {NoUN'] TPUNCT)
—_——

KyueTo npecne,qsau.le oT KOTKaTa

nsubj:pass punct
a”X'DWTNOUNﬂ PUNCT)
—— —— — — -
Pes byl honén koCkou

punct

bj
[(NOUN™{"***P*** " VERB"Y \m
Hunden jagades av katten

http://universaldependencies.org

Dependency parsing

* Transition-based parsing

* O(n)
* Only projective structures (pseudo-projective

* Graph-based parsing

¢ O(n?)
* Projective and non-projective trees

Projectivity

acl relcl

=% SIS

saw man today who is tall

* An arc between a head and dependent is projective if there is a path from
the head to every word between the head and dependent.

Transition-based parsing

* Basic idea: parse a sentence into a dependency tree by training a
local classifier to predict a parser’s next from its current

Configuration

Stack
Input buffer of words
Arcs in a parsed dependency tree

Parsing = sequences of transitions through space of possible
configurations

" obj}

(det)

= [=)

Book me the morning flight

@ book me the morning flight

stack action arc

stack

@ book me the morning flight

action

LeftArc(label): assert relation
between head at stacks and
dependent at stacko. remove
stackz

RightArc(label): assert relation
between head at stackz and
dependent at stacks; remove
stackq

Shift: Remove word from front
of input buffer (@) and push it
onto stack

arc

stack

book me the morning flight

action

LeftArc(label): assert relation
between head at stacks ()
and dependent at stacko:
remove stacko

RightArc(label): assert relation
between head at stackz and
dependent at stacki (9);
remove stacks ()

Shift: Remove word from front
of input buffer () and
push it onto stack

arc

If we remove an element from the stack,

it can’t have any further dependents me the morning ﬂight

stack action arc

LeftArc(label): assert relation
between head at stackj
(book) and dependent at
stackz (@). remove stacks ()

RightArc(label): assert relation

between head at stackz (@)

and dependent at stacki
book (book); remove stacki (book)

% > Shift: Remove word from front
of input buffer (me) and push
it onto stack

stack

me

book

the morning flight

action

LeftArc(label): assert relation
between head at stacks (me)
and dependent at stacks

() remove stacka ()

RightArc(label): assert relation
between head at stacks

() and dependent at
stacki (me); remove stacki

(me)

Shift: Remove word from front
of input buffer (the) and push
it onto stack

arc

iobj(book, me)

the morning flight

stack action arc

iobj(book, me)

LeftArc(label): assert relation
between head at stackj

() and dependent at
stacke (). remove stackez (2)

RightArc(label): assert relation
between head at stackz (@)

and dependent at stacki
book (); remove stacki ()
%) Shift: Remove word from front

of input buffer (the) and push
it onto stack

morning flight

stack action arc

iobj(book, me)
LeftArc(label): assert relation
between head at stacks (the)
and dependent at stacks
() remove stacka ()

the RightArc(label): assert relation
between head at stacks
() and dependent at

book stacks (the); remove stacks
(the)

%) > Shift: Remove word from front
of input buffer () and

push it onto stack

stack

morning
the

book

%)

action

LeftArc(label): assert relation
between head at stackj
() and dependent at

stackz (the). remove stacke

(the)

RightArc(label): assert relation

between head at stacks (
and dependent at stacki
(); remove stackq

()

Shift: Remove word from front

of input buffer (
push it onto stack

) and

)

flight

arc

iobj(book, me)

stack
flight
morning
the

book

%)

action arc

LeftArc(label): assert relation iobj(book, me)

between head at stackj
() and dependent at
stacko (). remove
stacka ()

nmod(flight, morning)

RightArc(label): assert relation
between head at stacks

() and dependent at
stacki (); remove stackj

()
‘. FF .
ofto-sack

stack

flight

the

book

action arc

iobj(book, me)
LeftArc(label): assert relation

between head at stackj nmod(flight, morning)
() and dependent at
stackz (the). remove stacke det(flight the)

(the)

RightArc(label): assert relation
between head at stacks (the)
and dependent at stacki

(); remove stacki ()

3 FF .
onto-sack

stack

flight

book

action

LeftArc(label): assert relation
between head at stackj

() and dependent at
stacka () remove stacko

(book)

RightArc(label): assert relation
between head at stacks

() and dependent at
stacki (); remove stackj

()
‘. FF .
ofto-sack

arc

iobj(book, me)
nmod(flight, morning)
det(flight, the)

obj(book, flight)

stack

book

action

LeftArc(label): assert relation
between head at stackj
(book) and dependent at
stackz (@). remove stacks ()

RightArc(label): assert relation
between head at stackz (@)
and dependent at stacki
(book); remove stacki (book)

‘. e .
arto-sack

This is our parse

arc

iobj(book, me)

nmod(flight, morning)
det(flight, the)
obj(book, flight)

root(a, book)

This is our parse

arc

iobj(book, me)

@
nmod(flight, morning)
(@
(iobj) [det(flight, the)
Book me the morning flight obj(book, flight)

root(a, book)

Let’s go back to this earlier
configuration

stack

me

book

the morning flight

action

LeftArc(label): assert relation
between head at stacks (me)
and dependent at stacks

(book). remove stackz (book)

RightArc(label): assert relation
between head at stacks
(book) and dependent at
stacks (me); remove stackj
(me)

Shift: Remove word from front
of input buffer (the) and push
it onto stack

arc

Output space Y = Shift

LeftArc()
RightArc()
 This is a multiclass classification LeftArc{det)
problem: given the current
. . . . RightArc(det)
configuration — i.e., the elements in
the stack, the words in the buffer,
LeftArc(ob))

and the arcs created so far, what’s

ition?
the best transition” RightArc(ob))

Features are scoped over the stack,
buffer, and arcs created so far

stack

me
book

buffer

the morning flight

arc

feature
stacki = me
stackz = book
stack; POS = PRP
buffers = the
buffero = morning
buffers = today

buffer1 POS = RB

stacks = me AND
stacks = book

stacks = PRP AND
stackz = VB

iobj(book,*) in arcs

example

1

Use any multiclass classification
model

* Logistic regression
« SVM

* NB

* Neural network

feature
stacks = me

stacks = book

stacki POS =
PRP

bufferi = the

buffers =
morning

buffers =
today

buffers POS =
RB

stacks = me
AND stacksz =

stacks = PRP
AND stacks =

iobj(book,*) in
arcs

example
1

1

0.7

1.3

6.4

-1.3

-0.07

0.52

-2.1

Training

We're training to predict the parser action —
—qiven the featurized configuration

Configuration features Label

<stack1 = me, 1>, <stack2 = book, 1>, <stack1 POS = PRP, 1>,

<buffer1 = the, 1>, Shift
<StaCk1 =me, 0>, <StaCk2 = bOOk, 0>’ <StaCk1 POS — PRP, 0>’ '

<buffer1 = the, 0>, RightArc(det)
<stack1 = me, 0>, <stack2 = book, 1>, <stack1 POS = PRP, 0>, RightArc(nsubj)

<buffer1 = the, 0>,

Neural Shift-Reduce Parsing

* We can train a neural shift-reduce parser by just changing how we:

* represent the configuration
* predict the label from that representation

* Otherwise training and prediction remains the same.

Neural Shift-Reduce Parsing

Softmax layer:
p = softmax(Wsh) [. . . ‘]
Hidden layer: [= —
h = (Wpa¥ + Wizt + Wizl +b;)?

Input layer: [z%, zt, '] [_-"_::I_"“://////////: '//////////‘ \\\\]

words POS tags arc labels
Stack Buffer
Configuration ROOT has_VBZ good-JJ | | control NN ...
nsubj
He_PRP

Chen and Manning (2014), “A Fast and Accurate Dependency Parser using Neural Networks”

Neural Shift-Reduce Parsing

Representation for configuration:

(0000

e Embeddings for words/POS tags on top \ !

of stack { A Jo MO8l }
e Embeddings for words/POS tags at front === I o N L R ks AN

of buffer ° / ° [______ ;1 ////// ///7/ \\\\\]
e Embeddings for existing arc labels words POS tags arc labels

T Stack Buffer
Classifier:
ROOT has_VBZ good_JJ | | control_NN

* Feed-forward neural network (input nsubj

representation has a fixed He_PRP

dimensionality)

Chen and Manning (2014), “A Fast and Accurate Dependency Parser using Neural Networks”

Training data

@b % (mod
=l e @)

JetBlue canceled our flight this morning which was already late

Our training data comes from treebanks (native dependency
syntax or converted to dependency trees).

Oracle

* An algorithm for converting a gold-standard dependency tree into
a transition-based parser should follow to yield the

tree.

@ Configuration features Label

<stackl = “”>, <stack?2 = “">,
(det) R <stack1 POS ;>> <buffer1 = Shift

[iobj) (nmod] ’

<stack1 = @>, <stack2 = “">,

Book me the morning flight <stack1 POS = @>, <buffer1 = Shift
book>,

<stack1 = book>, <stack2 =@>,

<stack1l POS = VB>, <buffer1 = Shift

me>,

This is our parse

arc

iobj(book, me)

@
nmod(flight, morning)
(@
(iobj) [det(flight, the)
Book me the morning flight obj(book, flight)

root(a, book)

@ book me the morning flight

stack action gold tree

iobj(book, me)

nmod(flight, morning)
det(flight, the)
obj(book, flight)

root(a, book)

stack

@ book me the morning

action

Choose LeftArc(label) if
exists in
gold tree. Remove stacko.

Else choose RightArc(label) if
exists in
gold tree and all arcs
have been
generated. Remove stackj

Else shift: Remove word from
front of input buffer and push
it onto stack

flight

gold tree

iobj(book, me)

nmod(flight, morning)
det(flight, the)
obj(book, flight)

root(a, book)

root(@, book) exists but book

has dependents in gold tree! book me the morning flight

stack action gold tree

iobj(book, me)
Choose LeftArc(label) if

label(stack; stacke) exists in nmod(flight, morning)
gold tree. Remove stacko.

Else choose RightArc(label) if det(flight, the)
label(stacks stacky) exists in
gold tree and all arcs obj(book, flight)

label(stacky,). have been

enerated. Remove stack
9 1 root(a, book)

Else shift: Remove word from
%) front of input buffer and push
it onto stack

iobj(book, me) exists and me

has no dependents in gold tree

stack

book

me the morning

action

Choose LeftArc(label) if
label(stacks stacke) exists in
gold tree. Remove stacko.

Else choose RightArc(label) if
label(stacks stacky) exists in
gold tree and all arcs
label(stacky,). have been
generated. Remove stackj

Else shift: Remove word from
front of input buffer and push
it onto stack

flight

gold tree

iobj(book, me)

nmod(flight, morning)
det(flight, the)
obj(book, flight)

root(a, book)

stack

me

book

the morning

action

Choose LeftArc(label) if
label(stacks stacks) exists in
gold tree. Remove stacko.

Else choose RightArc(label) if
label(stacks stacky) exists in
gold tree and all arcs
label(stacky, 7). have been
generated. Remove stackj

Else shift: Remove word from
front of input buffer and push
it onto stack

flight

gold tree

iobj(book, me)

nmod(flight, morning)
det(flight, the)
obj(book, flight)

root(a, book)

stack

the

book

morning

action

Choose LeftArc(label) if
label(stacks stacks) exists in
gold tree. Remove stacko.

Else choose RightArc(label) if
label(stacks stacky) exists in
gold tree and all arcs
label(stacky, 7). have been
generated. Remove stackj

Else shift: Remove word from
front of input buffer and push
it onto stack

flight

gold tree

iobj(book, me)

nmod(flight, morning)
det(flight, the)
obj(book, flight)

root(a, book)

stack

morning
the

book

%)

action

Choose LeftArc(label) if
label(stacks stacks) exists in
gold tree. Remove stacko.

Else choose RightArc(label) if
label(stacks stacky) exists in
gold tree and all arcs
label(stacky, 7). have been
generated. Remove stackj

Else shift: Remove word from
front of input buffer and push
it onto stack

flight

gold tree

iobj(book, me)

nmod(flight, morning)
det(flight, the)
obj(book, flight)

root(a, book)

nmod(flight,morning)

stack
flight
morning
the

book

%)

action

Choose LeftArc(label) if
label(stacks stacke) exists in
gold tree. Remove stacko.

Else choose RightArc(label) if
label(stacks stacky) exists in
gold tree and all arcs
label(stacky,). have been
generated. Remove stackj

Else shift: Remove word from
front of input buffer and push
it onto stack

gold tree

iobj(book, me)
nmod(flight, morning)
det(flight, the)
obj(book, flight)

root(a, book)

det(flight,the)

stack

flight

the

book

action

Choose LeftArc(label) if
label(stacks stacke) exists in
gold tree. Remove stacko.

Else choose RightArc(label) if
label(stacks stacky) exists in
gold tree and all arcs
label(stacky,). have been
generated. Remove stackj

Else shift: Remove word from
front of input buffer and push
it onto stack

gold tree

iobj(book, me)

nmod(flight, morning)
det(flight, the)
obj(book, flight)

root(a, book)

obj(book,flight)

stack

flight

book

action

Choose LeftArc(label) if
label(stacks stacke) exists in
gold tree. Remove stacko.

Else choose RightArc(label) if
label(stacks stacky) exists in
gold tree and all arcs
label(stacky,). have been
generated. Remove stackj

Else shift: Remove word from
front of input buffer and push
it onto stack

gold tree

iobj(book, me)
nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(a, book)

root(@, book) and book has no

more dependents we haven't
seen

stack

book

action

Choose LeftArc(label) if
label(stacks stacke) exists in
gold tree. Remove stacko.

Else choose RightArc(label) if
label(stacks stacky) exists in
gold tree and all arcs
label(stacky,). have been
generated. Remove stackj

Else shift: Remove word from
front of input buffer and push
it onto stack

gold tree

iobj(book, me)
nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(@, book)

With only @ left on the stack and nothing in

the buffer, we're done

stack

action

Choose LeftArc(label) if
label(stacks stacks) exists in
gold tree. Remove stacko.

Else choose RightArc(label) if
label(stacks stacky) exists in
gold tree and all arcs
label(stacky, *). have been
generated. Remove stackj

Else shift: Remove word from
front of input buffer and push
it onto stack

gold tree

iobj(book, me)
nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(, book)

Book

me

{ obj ',

(det)

morning

flight

Shift

Shift

Shift

RightArc(iobj)

Shift

Shift

Shift

LeftArc(nmod)

LeftArc(det)

RightArc(obj)

RightArc(root)

Logistics

« Homework 4 is due this Friday 3/8 (start now if you haven't already)
e Open Al APl keys
* Quiz 6 will be out on Friday afternoon (due Monday)

 Next week: Semantics

