Natural Language Processing

Info 159/259 Lecture 14: Syntactic Parsing (March 6, 2024)

Many slides & instruction ideas borrowed from: David Bamman, Greg Durrett & Dan Jurafsky

Logistics

- Homework 4 is due this Friday 3/8 (start now if you haven't already)
 - Open AI API keys
- Quiz 6 will be out on Friday afternoon (due Monday)
- This week: Syntax & Parsing

Context-free grammar

A context-free grammar defines how symbols in a language combine to form valid structures

NP	→	Det Nominal	
NP	\rightarrow	ProperNoun	non-terminals
Nominal	\rightarrow	Noun Nominal Noun	
Det	\rightarrow	a the	lexicon/
Noun	\rightarrow	flight	terminals

Constituents

Every internal node is a phrase

- my pajamas
- in my pajamas
- elephant in my pajamas
- an elephant in my pajamas
- shot an elephant in my pajamas
- I shot an elephant in my pajamas

Each phrase could be replaced by another of the same type of constituent

PCFG

- Probabilistic context-free grammar: each production is also associated with a probability.
- This lets us calculate the probability of a parse for a given sentence; for a given parse tree T for sentence S comprised of n rules from R (each A → β):

$$P(T,S) = \prod_{i}^{n} P(\beta \mid A)$$

PCFG

Ν	Finite set of non-terminal symbols	NP, VP, S
Σ	Finite alphabet of terminal symbols	the, dog, a
R	Set of production rules, each $A \rightarrow \beta [p]$ $p = P(\beta A)$	S → NP VP Noun → dog
S	Start symbol	

S

 $P(\text{NP VP} \mid \text{S}) \\ \times P(\text{Nominal} \mid \text{NP})$

 $P(\text{NP VP} \mid \text{S})$ $\times P(\text{Nominal} \mid \text{NP})$ $\times P(\text{Pronoun} \mid \text{Nominal})$

P(NP VP | S) $\times P(\text{Nominal} | \text{NP})$ $\times P(\text{Pronoun} | \text{Nominal})$ $\times P(\text{I} | \text{Pronoun})$

PCFGs

- A PCFG gives us a mechanism for assigning scores (here, probabilities) to different parses for the same sentence.
- But we often care about is finding the single best parse with the highest probability.

Context-free grammar

Ν	Finite set of non-terminal symbols	NP, VP, S
Σ	Finite alphabet of terminal symbols	the, dog, a
R	Set of production rules, each $A \rightarrow \beta$ $\beta \in (\Sigma, N)$	NP → DT JJ NN Noun → dog
S	Start symbol	

Chomsky Normal Form (CNF)

Ν	Finite set of non-terminal symbols	NP, VP, S
Σ	Finite alphabet of terminal symbols	the, dog, a
R	Set of production rules, each $A \rightarrow \beta$ β = single terminal (from Σ) or two non- terminals (from <i>N</i>)	$S \rightarrow NP VP$ Noun $\rightarrow dog$
S	Start symbol	

Chomsky Normal Form (CNF)

 Any CFG can be converted into weakly equivalent CNF (recognizing the same set of sentences as existing in the grammar but differing in their derivation).

S	\rightarrow	NP VP
VP	\rightarrow	VBD NP
VP	\rightarrow	VP PP
Nominal	\rightarrow	Nominal PP
Nominal	\rightarrow	NN
Nominal	\rightarrow	NNS
Nominal	\rightarrow	PRP
PP	\rightarrow	IN NP
NP	\rightarrow	DT NN
NP	\rightarrow	Nominal
NP	\rightarrow	PRP\$ Nominal

VBD	\rightarrow	shot
DT	\rightarrow	an my
NN	→	elephant
NNS	\rightarrow	pajamas
PRP	\rightarrow	I
PRP\$	\rightarrow	my
IN	→	in

I shot an elephant in my pajamas

S	→	NP VP
VP	\rightarrow	VBD NP
VP	\rightarrow	VP PP
Nominal	\rightarrow	Nominal PP
Nominal	→	pajamas elephant I
PP	→	IN NP
NP	→	DT NN
NP	→	pajamas elephant I
NP	→	PRP\$ Nominal

VBD	→	shot
DT	\rightarrow	an my
PRP	\rightarrow	I
PRP\$	\rightarrow	my
IN	→	in

I shot an elephant in my pajamas

CKY

- Cocke-Kasami-Younger algorithm (also CYK) for parsing from a grammar expressed in CNF.
 - Kasami (1965)
 - Younger (1967)
 - Cocke and Schwartz (1970)
- Bottom-up dynamic programming: once we discover a constituent, we can make it available for any rule that needs it.

		Ι	shot	an	elephant	in	my	pajamas
		NP, PRP [0,1]						
			VBD [1,2]					
				DT [2,3]				
					NP, NN [3,4]			
S	→	NP VP	VBD →	shot				
VP	→	VBD NP	DT →	• an my				
VP	→	VP PP	PRP →	· 1		[4,5]		
Nominal	→ →	pajamas Lelephant I I	PRP\$ →	• my			+	
PP	→	IN NP	IN →	• in			PRP\$	
NP	→	DT NN					[5,6]	
NP	→	pajamas elephant I						NNS
NP	→	PRP\$ Nominal						[6,7]

	I	shot	an	elephant	in	my	pajamas
	NP, PRP [0,1]						
		VBD [1,2]					
			DT [2,3]				
				NP, NN [3,4]			
					IN [4,5]		
i,j keep types t	os track of al hat can be					PRP\$ [5,6]	
i throu	gh position j						NNS [6,7]

	I	shot	an	elephant	in	my	pajamas
	NP, PRP [0,1]						
		VBD [1,2]					
			DT [2,3]				
				NP, NN [3,4]			
					IN [4,5]		
What phrases can be formed from [5,6]							
"shot an e	lephant in"						NNS [6,7]

	I	shot	an	elephant	in	my	pajamas
	NP, PRP [0,1]						
		VBD [1,2]					
			DT [2,3]				
				NP, NN [3,4]			
					IN [4,5]		
What phrases ca	In be formed	from				PRP\$ [5,6]	
paja	mas"						NNS [6,7]

CNF

• In CNF, each non-terminal generates two non-terminals

$S \rightarrow NP VP$

[s [NP I] [VP shot an elephant in my pajamas]]

 If the left-side non-terminal (S) spans tokens i-j, the right side (NP VP) must also span i-j, and there must be a single position k that separates them.

	I	shot	an	elephant	in	my	pajamas
	NP, PRP [0,1]						
		VBD [1,2]					
			DT [2,3]				
				NP, NN [3,4]			
					IN [4,5]		
any rule ge	nerate PRP \	/BD?				PRP\$ [5,6]	
there any CFG that ? → PF	production ir generates: RP VBD	n our					NNS [6,7]

Does

	I	sł	not	an	elephant	in	my	pajamas
	NP, PRP [0,1]	Q	Ø					
		VE [1	3D ,2]					
				DT [2,3]				
					NP, NN [3,4]			
						IN [4,5]		
Does any ru	ule generate) DT?						PRP\$ [5,6]	
VBD								NNS [6,7]

	I	shot	an	elephant	in	my	pajamas
	NP, PRP [0,1]	Ø	Ø				
		VBD [1,2]	Ø				
			DT [2,3]				
				NP, NN [3,4]			
					IN [4,5]		
oes any_ru	le generate					PRP\$ [5,6]	
1 TD	NN?						NNS [6,7]

	I	shot	an	elephant	in	my	pajamas
	NP, PRP [0,1]	Ø	Ø				
		VBD [1,2]	Ø	VP [1,4]			
			DT [2,3]	NP [2,4]			
				NP, NN [3,4]			
					IN [4,5]		
Three possible p sp	laces look fo lit k	r that				PRP\$ [5,6]	
							NNS [6,7]

	I	shot	an	elephant	in	my	pajamas
	NP, PRP [0,1]	Ø	Ø	` ~)		
		VBD [1,2]	Ø	VP [1,4]			
			DT [2,3]	NP [2,4]			
				NP, NN [3,4]			
					IN [4,5]		
Three possible p sp	laces look fo lit k	r that				PRP\$ [5,6]	
							NNS [6,7]

l	shot	an	elephant	in	my	pajamas
NP, PRP [0,1]	Ø	Ø	S [0,4]			
	VBD [1,2]	Ø	VP [1,4]			
		DT [2,3]	NP [2,4]			
			NP, NN [3,4]			
				IN [4,5]		
					PRP\$ [5,6]	
						NNS [6,7]

	I	shot	an	elephant	in	my	pajamas
	NP, PRP [0,1]	Ø	Ø	S [0,4]	Ø	Ø	
		VBD [1,2]	Ø	VP [1,4]	Ø	Ø	
			DT [2,3]	NP [2,4]	Ø	Ø	
				NP, NN [3,4]	Ø	Ø	
*elephant in		*in my			IN [4,5]	Ø	
*an elephant in *shot an eleph *I shot an eleph	n nant in phant in	*elephant in *an elephan *shot an ele	my It in my phant in my			PRP\$ [5,6]	
		i shul an ei		/			NNS [6,7]

I	shot	an	elephant	in	my	pajamas
NP, PRP [0,1]	Ø	Ø	S [0,4]	Ø	Ø	
	VBD [1,2]	Ø	VP [1,4]	Ø	Ø	
		DT [2,3]	NP [2,4]	Ø	Ø	
			NP, NN [3,4]	Ø	Ø	
				IN [4,5]	Ø	
					PRP\$ [5,6]	NP [5,7]
						NNS [6,7]

I	shot	an	elephant	in	my	pajamas
NP, PRP [0,1]	Ø	Ø	S [0,4]	Ø	Ø	
	VBD [1,2]	Ø	VP [1,4]	Ø	Ø	
		DT [2,3]	NP [2,4]	Ø	Ø	
			NP, NN [3,4]	Ø	Ø	
				IN [4,5]	Ø	PP [4,7]
					PRP\$ [5,6]	NP [5,7]
						NNS [6,7]

I	shot	an	elephant	in	my	pajamas
NP, PRP [0,1]	Ø	Ø	S [0,4]	Ø	Ø	
	VBD [1,2]	Ø	VP [1,4]	Ø	Ø	
		DT [2,3]	NP [2,4]	Ø	Ø	
			NP, NN [3,4]	Ø	Ø	NP [3,7]
				IN [4,5]	Ø	PP [4,7]
					PRP\$ [5,6]	NP [5,7]
						NNS [6,7]

I	shot	an	elephant	in	my	pajamas
NP, PRP [0,1]	Ø	Ø	S [0,4]	Ø	Ø	
	VBD [1,2]	Ø	VP [1,4]	Ø	Ø	
		DT [2,3]	NP [2,4]	Ø	Ø	NP [3,7]
			NP, NN [3,4]	Ø	Ø	NP [3,7]
				IN [4,5]	Ø	PP [4,7]
					PRP\$ [5,6]	NP [5,7]
						NNS [6,7]

I	shot	an	elephant	in	my	pajamas
NP, PRP [0,1]	Ø	0	S [0,4]	Ø		
	VBD [1,2]	Ø	VP [1,4]	Ø	Ø	<u> </u>
		DT [2,3]	NP [2,4]	Ø	Ø	NP 🖌 [3,7]
			NP, NN [3,4]	Ø	Ø	NP [3,7]
				IN [4,5]	Ø	PP [4,7]
					PRP\$ [5,6]	NP [5,7]
						NNS [6,7]

I	shot	an	elephant	in	my	pajamas
NP, PRP [0,1]	Ø	Ø	S [0,4]	Ø	Ø	
	VBD [1,2]	Ø	VP [1,4]	Ø	Ø	` `
		DT [2,3]	NP [2,4]	Ø	Ø	NP [3,7]
			NP, NN [3,4]	Ø	Ø	NP [3,7]
				IN [4,5]	Ø	PP [4,7]
					PRP\$ [5,6]	NP [5,7]
						NNS [6,7]

I	shot	an	elephant	in	my	pajamas
NP, PRP [0,1]	Ø	Ø	S [0,4]	<i>_</i>	Ø	
	VBD [1,2]	Ø	VP [1,4]	Ø	Ø	
		DT [2,3]	NP [2,4]	Ø	Ø	NP [3,7]
			NP, NN [3,4]	Ø	Ø	NP [3,7]
				IN [4,5]	Ø	PP [4,7]
					PRP\$ [5,6]	NP [5,7]
						NNS [6,7]

I	shot	an	elephant	in	my	pajamas
NP, PRP	Ø	Ø	S	a		
[0,1]	Ø	Ø	[0,4]			\mathbf{h}
	VBD [1,2]	Ø	VP [1,4]	Ø	Ø) \
		DT [2,3]	NP [2,4]	Ø	Ø	NP [3,7]
			NP, NN [3,4]	Ø	Ø	NP [3,7]
				IN [4,5]	Ø	PP [4,7]
					PRP\$ [5,6]	NP [5,7]
						NNS [6,7]

	shot	an	elephant	in	my	pajamas
NP, PRP [0,1]	Ø	Ø	S [0,4]	Ø	×	$\overline{}$
	VBD [1,2]	Ø	VP [1,4]	Ø	Ø	
		DT [2,3]	NP [2,4]	Ø	Ø	NP [3,7]
			NP, NN [3,4]	Ø	Ø	NP [3,7]
				IN [4,5]	Ø	PP [4,7]
					PRP\$ [5,6]	NP [5,7]
						NNS [6,7]

I	shot	an	elephant	in	my	pajamas	
NP, PRP [0,1]	Ø	Ø	S [0,4]	P	Ø		
	VBD [1,2]	Ø	VP [1,4]	Ø	Ø	<u> </u>	
		DT [2,3]	NP [2,4]	Ø	Ø	NP [3,7]	
			NP, NN [3,4]	Ø	Ø	NP [3,7]	
				IN [4,5]	Ø	PP [4,7]	
					PRP\$ [5,6]	NP [5,7]	
						NNS [6,7]	

I	shot	an	elephant	in	my	pajamas
NP, PRP [0,1]	Ø	Ø	S [0,4]	Ø	Ø	
	VBD [1,2]	Ø	VP [1,4]	Ø	Ø	VP ₁ , VP ₂ [1,7]
		DT [2,3]	NP [2,4]	Ø	Ø	NP [2,7]
			NP, NN [3,4]	Ø	Ø	NP [3,7]
				IN [4,5]	Ø	PP [4,7]
					PRP\$ [5,6]	NP [5,7]
						NNS [6,7]

	I	shot	ân	elephant	in	my	pajamas	
	NP, PRP [0,1]	Ø	Ø	S [0,4]	Ø	Ø	/ _	
		VBD [1,2]	Ø	VP [1,4]	Ø	Ø	VP ₁ , VP ₂ [1,7]	/
			DT [2,3]	NP [2,4]	Ø	Ø	NP [2,7]	
				NP, NN [3,4]	Ø	Ø	NP [3,7]	
Poss	sibilities:				IN [4,5]	Ø	PP [4,7]	
$\rightarrow NP VP_1$ $\rightarrow NP VP_2$ $\rightarrow S PP$						PRP\$ [5,6]	NP [5,7]	
→ PRP VP1 → PRP VP2							NNS [6,7]	

	I	shot	an	elephant	in	my	pajamas
	NP, PRP [0,1]	Ø	Ø	S [0,4]	Ø	Ø	S _{1,} S ₂ [0,7]
		VBD [1,2]	Ø	VP [1,4]	Ø	Ø	VP ₁ , VP ₂ [1,7]
			DT [2,3]	NP [2,4]	Ø	Ø	NP [2,7]
				NP, NN [3,4]	Ø	Ø	NP [3,7]
					IN [4,5]	Ø	PP [4,7]
/e wo	NP [5,7]						
							NNS [6,7]

CKY algorithm

```
function CKY-PARSE(words, grammar) returns table

for j \leftarrow from 1 to LENGTH(words) do

for all \{A \mid A \rightarrow words[j] \in grammar\}

table[j-1, j] \leftarrow table[j-1, j] \cup A

for i \leftarrow from j-2 downto 0 do

for k \leftarrow i+1 to j-1 do

for all \{A \mid A \rightarrow BC \in grammar and B \in table[i,k] and C \in table[k, j]\}

table[i,j] \leftarrow table[i,j] \cup A
```

Figure 12.5 The CKY algorithm.

	I	shot	an	elephant	in	my	pajamas
	NP, PRP [0,1]	Ø	Ø	S [0,4]	Ø	Ø	S ₁ , S ₂ [0,7]
		VBD [1,2]	Ø	VP [1,4]	Ø	Ø	VP ₁ , VP ₂ [1,7]
			DT [2,3]	NP [2,4]	Ø	Ø	NP [2,7]
				NP, NN [3,4]	Ø	Ø	NP [3,7]
					IN [4,5]	Ø	PP [4,7]
ne	complexity?					PRP\$ [5,6]	NP [5,7]
							NNS [6,7]

CFG

- This use of CKY allows us to:
 - check whether a sentence in grammatical in the language defined by the CFG
 - enumerate all possible parses for a sentence
- But it doesn't tell us on its own which of those possible parses is most likely.

PCFGs

- A PCFG gives us a mechanism for assigning scores (here, probabilities) to different parses for the same sentence.
- We often care about is finding the single best parse with the highest probability.
- We calculate the max probability parse using CKY by storing the probability of each phrase within each cell as we build it up.

Formalisms

Phrase structure grammar (Chomsky 1957) Dependency grammar (Mel'čuk 1988; Tesnière 1959; Pāṇini)

Dependency syntax

- Enables "Who Did What to Whom" kind of analysis for semantics.
- Syntactic structure = asymmetric, binary relations between words.

Trees

- A dependency structure is a directed graph G = (V,A) consisting of a set of vertices V and arcs A between them. Typically constrained to form a tree:
 - Single root vertex with no incoming arcs
 - Every vertex has exactly one incoming arc except root (single head constraint)
 - There is a unique path from the root to each vertex in V (acyclic constraint)

Universal Dependencies

http://universaldependencies.org

Dependency parsing

- Transition-based parsing
 - O(n)
 - Only projective structures (pseudo-projective [Nivre and Nilsson 2005])
- Graph-based parsing
 - O(n²)
 - Projective and non-projective trees

Projectivity

 An arc between a head and dependent is projective if there is a path from the head to every word between the head and dependent. Every word between head and dependent is a descendent of the head.
Transition-based parsing

• Basic idea: parse a sentence into a dependency tree by training a local classifier to predict a parser's next action from its current configuration.

Configuration

- Stack
- Input buffer of words
- Arcs in a parsed dependency tree
- Parsing = sequences of transitions through space of possible configurations

ø book me the morning flight

stack

action

arc

ø book me the morning flight

stack

action

arc

LeftArc(label): assert relation between head at stack₁ and dependent at stack₂: remove stack₂

RightArc(label): assert relation between head at stack₂ and dependent at stack₁; remove stack₁

Shift: Remove word from front of input buffer (∅) and push it onto stack

book me the morning flight

arc

stack	action	
		LeftArc(label): assert relation between head at stack ₁ (\emptyset) and dependent at stack _{2:} remove stack ₂
		RightArc(label): assert relation between head at stack ₂ and dependent at stack ₁ (\emptyset); remove stack ₁ (\emptyset)
Ø	G	Shift: Remove word from front of input buffer (book) and push it onto stack

If we remove an element from the stack, it can't have any further dependents

me the morning flight

stack		action	
		LeftArc(label): assert relation between head at stack ₁ (book) and dependent at stack ₂ (\emptyset): remove stack ₂ (\emptyset)	
book		RightArc(label): assert relation between head at stack ₂ (\emptyset) and dependent at stack ₁ (book); remove stack ₁ (book)	
Ø	(P)	Shift: Remove word from front of input buffer (me) and push it onto stack	

the morning flight

stack		action	arc	
			iobj(book, me)	
		LeftArc(label): assert relation between head at stack ₁ (me) and dependent at stack ₂ (book): remove stack ₂ (book)		
me	₩\$P	RightArc(label): assert relation between head at stack ₂		
book		stack ₁ (me); remove stack ₁ (me)		
Ø		Shift: Remove word from front of input buffer (the) and push it onto stack		

the morning flight

stack	action	arc	
		iobj(book, me)	
	LeftArc(label): assert relation between head at stack ₁ (book) and dependent at stack ₂ (Ø): remove stack ₂ (Ø)		
book	RightArc(label): assert relation between head at stack ₂ (Ø) and dependent at stack ₁ (book); remove stack ₁ (book)		
Ø	Shift: Remove word from front of input buffer (the) and push it onto stack		

morning flight

stack		action	arc
			iobj(book, me)
		LeftArc(label): assert relation between head at stack ₁ (the) and dependent at stack ₂ (book): remove stack ₂ (book)	
the		RightArc(label): assert relation between head at stack ₂	
book		(book) and dependent at stack ₁ (the); remove stack ₁ (the)	
Ø	(P)	Shift: Remove word from front of input buffer (morning) and push it onto stack	

flight

stack		action	arc
morning		LeftArc(label): assert relation between head at stack ₁ (morning) and dependent at stack ₂ (the): remove stack ₂ (the)	iobj(book, me)
the		RightArc(label): assert relation between head at stack ₂ (the)	
book		and dependent at stack ₁ (morning); remove stack ₁ (morning)	
Ø	B	Shift: Remove word from front of input buffer (flight) and push it onto stack	

stack		action	arc
flight morning	CF	LeftArc(label): assert relation between head at stack ₁ (flight) and dependent at stack ₂ (morning): remove stack ₂ (morning)	iobj(book, me) nmod(flight, morning)
the book		RightArc(label): assert relation between head at stack ₂ (morning) and dependent at stack ₁ (flight); remove stack ₁ (flight)	
Ø		Shift: Remove word from front of input buffer and push it onto stack	

stack	action	arc
flight		iobj(book, me)
0	LettArc(label): assert relation between head at stack ₁ (flight) and dependent at	nmod(flight, morning)
	stack ₂ (the): remove stack ₂ (the)	det(flight, the)
the	RightArc(label): assert relation	
book	between head at stack ₂ (the) and dependent at stack ₁ (flight); remove stack ₁ (flight)	
Ø	Shift: Remove word from front of input buffer and push it onto stack	

stack		action	arc
flight		LeftArc(label): assert relation	iobj(book, me)
		between head at stack ₁ (flight) and dependent at	nmod(flight, morning)
		stack ₂ (book): remove stack ₂ (book)	det(flight, the)
	B	RightArc(label): assert relation between head at stack2	obj(book, flight)
book		(book) and dependent at stack ₁ (flight); remove stack ₁ (flight)	
Ø		(ingini) Shift: Remove word from front of input buffer and push it	

This is our parse

stack		action	arc
			iobj(book, me)
		LeftArc(label): assert relation between head at stack ₁ (book) and dependent at	nmod(flight, morning)
		stack ₂ (\varnothing): remove stack ₂ (\varnothing)	det(flight, the)
	B	RightArc(label): assert relation between head at stack₂ (∅)	obj(book, flight)
book		and dependent at stack1 (book); remove stack1 (book)	root(ø, book)
Ø		Shift: Remove word from front of input buffer and push it onto stack	

This is our parse

arc

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(Ø, book)

Let's go back to this earlier configuration

the morning flight

stack	action	
	LeftArc(label): assert relation between head at stack ₁ (me) and dependent at stack ₂ (book): remove stack ₂ (book)	
me	RightArc(label): assert relation between head at stack2	
book	(book) and dependent at stack1 (me); remove stack1 (me)	
Ø	Shift: Remove word from front of input buffer (the) and push it onto stack	

 This is a multiclass classification problem: given the current configuration — i.e., the elements in the stack, the words in the buffer, and the arcs created so far, what's the best transition?

Features are scoped over the stack, buffer, and arcs created so far

stack			
me			
book			
buffer	r		
the	morning	flight	
arc			

feature	example
$stack_1 = me$	1
$stack_2 = book$	1
$stack_1 POS = PRP$	1
$buffer_1 = the$	1
buffer ₂ = morning	1
buffer1 = today	0
buffer ₁ POS = RB	0
$stack_1 = me AND$ $stack_2 = book$	1
stack ₁ = PRP AND stack ₂ = VB	1
iobj(book,*) in arcs	0

Use any multiclass classification model

- Logistic regression
- SVM
- NB
- Neural network

feature	example	β
$stack_1 = me$	1	0.7
$stack_2 = book$	1	1.3
stack₁ POS = PRP	1	6.4
$buffer_1 = the$	1	-1.3
buffer ₂ = morning	1	-0.07
buffer ₁ = today	0	0.52
buffer ₁ POS = RB	0	-2.1
stack ₁ = me AND stack ₂ =	1	0
stack ₁ = PRP AND stack ₂ =	1	-0.1
iobj(book,*) in arcs	0	3.2

Training

We're training to predict the parser action —Shift, RightArc(label), LeftArc(label)—given the featurized configuration

Configuration features	Label
<stack1 1="" =="" me,="">, <stack2 1="" =="" book,="">, <stack1 1="" pos="PRP,">, <buffer1 1="" =="" the,="">,</buffer1></stack1></stack2></stack1>	Shift
<stack1 0="" =="" me,="">, <stack2 0="" =="" book,="">, <stack1 0="" pos="PRP,">, <buffer1 0="" =="" the,="">,</buffer1></stack1></stack2></stack1>	RightArc(det)
<stack1 0="" =="" me,="">, <stack2 1="" =="" book,="">, <stack1 0="" pos="PRP,">, <buffer1 0="" =="" the,="">,</buffer1></stack1></stack2></stack1>	RightArc(nsubj)

Neural Shift-Reduce Parsing

- We can train a neural shift-reduce parser by just changing how we:
 - represent the configuration
 - predict the label from that representation
- Otherwise training and prediction remains the same.

Neural Shift-Reduce Parsing

Chen and Manning (2014), "A Fast and Accurate Dependency Parser using Neural Networks"

Neural Shift-Reduce Parsing

Representation for configuration:

- Embeddings for words/POS tags on top of stack
- Embeddings for words/POS tags at front of buffer
- Embeddings for existing arc labels

Classifier:

 Feed-forward neural network (input representation has a fixed dimensionality)

Chen and Manning (2014), "A Fast and Accurate Dependency Parser using Neural Networks"

Training data

Our training data comes from treebanks (native dependency syntax or converted to dependency trees).

Oracle

 An algorithm for converting a gold-standard dependency tree into a series of actions a transition-based parser should follow to yield the tree.

Configuration features	Label
<stack1 ""="" =="">, <stack2 ""="" =="">, <stack1 pos="">, <buffer1 =<br="">Ø>,</buffer1></stack1></stack2></stack1>	Shift
<stack1 =="" ø="">, <stack2 ""="" =="">, <stack1 pos="Ø">, <buffer1 =<br="">book>,</buffer1></stack1></stack2></stack1>	Shift
<stack1 =="" book="">, <stack2 =ø="">, <stack1 pos="VB">, <buffer1 =<br="">me>,</buffer1></stack1></stack2></stack1>	Shift

This is our parse

arc

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(Ø, book)

ø book me the morning flight

stack

action

gold tree

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(Ø, book)

ø book me the morning flight

stack	action	gold tree
	Choose LeftArc(label) if	iobj(book, me)
	label(stack ₁ ,stack ₂) exists in gold tree. Remove stack ₂ .	nmod(flight, morning)
	Else choose RightArc(label) if label(stack2 stack1) exists in	det(flight, the)
	gold tree and all arcs label(stack ₁ , *). have been	obj(book, flight)
	generated. Remove stack1	root(ø, book)
	Else shift: Remove word from front of input buffer and push it onto stack	

root(Ø, book) exists but book has dependents in gold tree!

book me the morning flight

stack

action

Choose LeftArc(label) if label(stack₁,stack₂) exists in gold tree. Remove stack₂.

Else choose RightArc(label) if label(stack₂, stack₁) exists in gold tree and all arcs label(stack₁, *). have been generated. Remove stack₁

Else shift: Remove word from front of input buffer and push it onto stack

gold tree

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(Ø, book)

Ø

iobj(book, me) exists and me has no dependents in gold tree

me the morning flight

stack	action	gold tree
	Choose LeftArc(label) if	iobj(book, me)
	label(stack ₁ ,stack ₂) exists in gold tree. Remove stack ₂ .	nmod(flight, morning)
	Else choose RightArc(label) if label(stack2 stack1) exists in	det(flight, the)
	gold tree and all arcs label(stack ₁ , *). have been	obj(book, flight)
book	generated. Remove stack1	root(ø, book)
Ø	Else shift: Remove word from front of input buffer and push it onto stack	

the morning flight

stack	action	gold tree
	Choose LeftArc(label) if label(stack1,stack2) exists in gold tree. Remove stack2.	iobj(book, me) nmod(flight, morning)
	Else choose RightArc(label) if	det(flight, the)
me	gold tree and all arcs label(stack ₁ , *). have been	obj(book, flight)
book	generated. Remove stack1	root(ø, book)
Ø	Else shift: Remove word from front of input buffer and push it onto stack	

morning flight

stack	action	gold tree
	Choose LeftArc(label) if label(stack1,stack2) exists in gold tree. Remove stack2.	iobj(book, me) nmod(flight, morning)
	Else choose RightArc(label) if label(stack2 stack1) exists in	det(flight, the)
the	gold tree and all arcs label(stack ₁ , *). have been	obj(book, flight)
book	generated. Remove stack1	root(ø, book)
Ø	Else shift: Remove word from front of input buffer and push it onto stack	

flight

stack	action	gold tree
	Choose LeftArc(label) if	🔽 iobj(book, me)
morning	label(stack ₁ ,stack ₂) exists in gold tree. Remove stack ₂ .	nmod(flight, morning)
	Else choose RightArc(label) if	det(flight, the)
the	gold tree and all arcs label(stack ₁ , *), have been	obj(book, flight)
book	generated. Remove stack1	root(ø, book)
Ø	Else shift: Remove word from front of input buffer and push it onto stack	

stack	action	gold tree
flight	Choose LeftArc(label) if	iobj(book, me)
morning	label(stack1,stack2) exists in gold tree. Remove stack2.	nmod(flight, morning)
the	Else choose RightArc(label) if label(stack ₂ , stack ₁) exists in	det(flight, the)
une	gold tree and all arcs label(stack1, *). have been	obj(book, flight)
book	generated. Remove stack1	root(ø, book)
Ø	Else shift: Remove word from front of input buffer and push it onto stack	

stack	action	gold tree
flight	Choose LeftArc(label) if label(stack1,stack2) exists in gold tree. Remove stack2.	iobj(book, me) inmod(flight, morning)
the	Else choose RightArc(label) if label(stack ₂ , stack ₁) exists in gold tree and all arcs	det(flight, the) obj(book, flight)
book	generated. Remove stack ₁	root(ø, book)
Ø	Else shift: Remove word from front of input buffer and push it onto stack	
stack	action	gold tree
-------	---	--
light	Choose LeftArc(label) if label(stack ₁ ,stack ₂) exists in gold tree. Remove stack ₂ .	✓ iobj(book, me)✓ nmod(flight, morning)
oook	Else choose RightArc(label) if label(stack ₂ , stack ₁) exists in gold tree and all arcs label(stack ₁ , *). have been generated. Remove stack ₁	 det(flight, the) obj(book, flight) root(Ø, book)
Ø	Else shift: Remove word from front of input buffer and push it onto stack	

root(Ø, book) *and* book has no more dependents we haven't seen

stack

book

Ø

action

Choose LeftArc(label) if label(stack1,stack2) exists in gold tree. Remove stack2.

Else choose RightArc(label) if label(stack₂, stack₁) exists in gold tree and all arcs label(stack₁, *). have been generated. Remove stack₁

Else shift: Remove word from front of input buffer and push it onto stack

gold tree

iobj(book, me)

 \checkmark

nmod(flight, morning)

det(flight, the)

root(ø, book)

With only Ø left on the stack and nothing in the buffer, we're done

stack

Ø

action

Choose LeftArc(label) if label(stack₁,stack₂) exists in gold tree. Remove stack₂.

Else choose RightArc(label) if label(stack₂, stack₁) exists in gold tree and all arcs label(stack₁, *). have been generated. Remove stack₁

Else shift: Remove word from front of input buffer and push it onto stack

gold tree

iobj(book, me)

 \checkmark

Logistics

- Homework 4 is due this Friday 3/8 (start now if you haven't already)
 - Open AI API keys
- Quiz 6 will be out on Friday afternoon (due Monday)
- Next week: Semantics