
Natural Language Processing
Info 159/259

Lecture 14: Syntactic Parsing (March 6, 2024)

Many slides & instruction ideas borrowed from:
David Bamman, Greg Durrett & Dan Jurafsky

Logistics

• Homework 4 is due this Friday 3/8 (start now if you haven’t already)

• Open AI API keys

• Quiz 6 will be out on Friday afternoon (due Monday)

• This week: Syntax & Parsing

Context-free grammar

NP → Det Nominal

NP → ProperNoun

Nominal → Noun | Nominal Noun

Det → a | the

Noun → flight

non-terminals

lexicon/
terminals

A context-free grammar defines how symbols in a language combine to
form valid structures

Constituents
Every internal node is a phrase

• my pajamas
• in my pajamas
• elephant in my pajamas
• an elephant in my pajamas
• shot an elephant in my pajamas
• I shot an elephant in my pajamas

Each phrase could be replaced by
another of the same type of constituent

PCFG
• Probabilistic context-free grammar: each production is also associated

with a probability.

• This lets us calculate the probability of a parse for a given sentence; for a
given parse tree T for sentence S comprised of n rules from R (each A →
β):

P (T, S) =
n�

i

P (� | A)

N Finite set of non-terminal symbols NP, VP, S

Σ Finite alphabet of terminal symbols the, dog, a

R
Set of production rules, each

A → β [p]
p = P(β | A)

S → NP VP
Noun → dog

S Start symbol

PCFG

P (NP VP | S)

�P (Nominal | NP)

P (NP VP | S)

�P (Pronoun | Nominal)

�P (Nominal | NP)

P (NP VP | S)

�P (I | Pronoun)

�P (Pronoun | Nominal)

�P (Nominal | NP)

P (NP VP | S)

�P (VP PP | VP)

�P (I | Pronoun)

�P (Pronoun | Nominal)

�P (Nominal | NP)

P (NP VP | S)

�P (Verb NP | VP)

�P (VP PP | VP)

�P (I | Pronoun)

�P (Pronoun | Nominal)

�P (Nominal | NP)

P (NP VP | S)

�P (shot | Verb)

�P (Verb NP | VP)

�P (VP PP | VP)

�P (I | Pronoun)

�P (Pronoun | Nominal)

�P (Nominal | NP)

P (NP VP | S)

�P (Det Nominal | NP)

�P (Verb NP | VP)

�P (VP PP | VP)

�P (I | Pronoun)

�P (Pronoun | Nominal)

�P (Nominal | NP)

P (NP VP | S)

�P (shot | Verb)

�P (an | Det)

�P (Verb NP | VP)

�P (VP PP | VP)

�P (I | Pronoun)

�P (Pronoun | Nominal)

�P (Nominal | NP)

P (NP VP | S)

�P (Det Nominal | NP)

�P (shot | Verb)

�P (Noun | Nominal)

�P (Verb NP | VP)

�P (VP PP | VP)

�P (I | Pronoun)

�P (Pronoun | Nominal)

�P (Nominal | NP)

P (NP VP | S)

�P (an | Det)

�P (Det Nominal | NP)

�P (shot | Verb)

�P (elephant | Noun)

�P (Verb NP | VP)

�P (VP PP | VP)

�P (I | Pronoun)

�P (Pronoun | Nominal)

�P (Nominal | NP)

P (NP VP | S)

�P (Noun | Nominal)

�P (an | Det)

�P (Det Nominal | NP)

�P (shot | Verb)

P (T, S) =
n�

i

P (� | A)

PCFGs

• A PCFG gives us a mechanism for assigning scores (here,
probabilities) to different parses for the same sentence.

• But we often care about is finding the single best parse with the
highest probability.

Context-free grammar

N Finite set of non-terminal symbols NP, VP, S

Σ Finite alphabet of terminal symbols the, dog, a

R
Set of production rules, each

A → β
β ∈ (Σ, N)

NP → DT JJ NN
Noun → dog

S Start symbol

Chomsky Normal Form (CNF)

N Finite set of non-terminal symbols NP, VP, S

Σ Finite alphabet of terminal symbols the, dog, a

R

Set of production rules, each
A → β

β = single terminal (from Σ) or two non-
terminals (from N)

S → NP VP
Noun → dog

S Start symbol

• Any CFG can be converted into weakly equivalent CNF (recognizing
the same set of sentences as existing in the grammar but differing in
their derivation).

NP → DT JJ NN

X → DT JJ
NP → X NN

Chomsky Normal Form (CNF)

S → NP VP
VP → VBD NP
VP → VP PP

Nominal → Nominal PP
Nominal → NN
Nominal → NNS
Nominal → PRP

PP → IN NP
NP → DT NN
NP → Nominal
NP → PRP$ Nominal

VBD → shot

DT → an | my

NN → elephant
NNS → pajamas
PRP → I

PRP$ → my

IN → in

I shot an elephant in my pajamas

S → NP VP

VP → VBD NP

VP → VP PP

Nominal → Nominal PP

Nominal → pajamas | elephant | I

PP → IN NP

NP → DT NN

NP → pajamas | elephant | I

NP → PRP$ Nominal

VBD → shot

DT → an | my

PRP → I

PRP$ → my

IN → in

I shot an elephant in my pajamas

CKY
• Cocke-Kasami-Younger algorithm (also CYK) for parsing from a

grammar expressed in CNF.

• Kasami (1965)
• Younger (1967)
• Cocke and Schwartz (1970)

• Bottom-up dynamic programming: once we discover a constituent, we
can make it available for any rule that needs it.

I shot an elephant in my pajamas

0 1 2 3 4 5 6 7

NP, PRP
[0,1]

VBD
[1,2]

DT
[2,3]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

NP, PRP
[0,1]

VBD
[1,2]

DT
[2,3]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

Each cell i,j keeps track of all
phrase types that can be

formed from all words from
position i through position j

NP, PRP
[0,1]

VBD
[1,2]

DT
[2,3]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

What phrases can be formed from
“shot an elephant in”

NP, PRP
[0,1]

VBD
[1,2]

DT
[2,3]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

What phrases can be formed from
“I shot an elephant in my

pajamas”

CNF
• In CNF, each non-terminal generates two non-terminals

S → NP VP

• If the left-side non-terminal (S) spans tokens i-j, the right side (NP VP)
must also span i-j, and there must be a single position k that
separates them.

[S [NP I] [VP shot an elephant in my pajamas]]

NP, PRP
[0,1]

VBD
[1,2]

DT
[2,3]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

Does any rule generate PRP VBD?

i.e., is there any production in our
CFG that generates:

? → PRP VBD

NP, PRP
[0,1]

∅

VBD
[1,2]

DT
[2,3]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

Does any rule generate
VBD DT?

NP, PRP
[0,1]

∅

VBD
[1,2]

∅

DT
[2,3]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

Two possible places look for that
split k

NP, PRP
[0,1]

∅

VBD
[1,2]

∅

DT
[2,3]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

Two possible places look for that
split k

NP, PRP
[0,1]

∅

VBD
[1,2]

∅

DT
[2,3]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

Two possible places look for that
split k

NP, PRP
[0,1]

∅ ∅

VBD
[1,2]

∅

DT
[2,3]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

Does any rule generate
DT NN?

NP, PRP
[0,1]

∅ ∅

VBD
[1,2]

∅

DT
[2,3]

NP
[2,4]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

Two possible places look for that
split k

NP, PRP
[0,1]

∅ ∅

VBD
[1,2]

∅

DT
[2,3]

NP
[2,4]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

Two possible places look for that
split k

NP, PRP
[0,1]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

DT
[2,3]

NP
[2,4]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

Three possible places look for that
split k

NP, PRP
[0,1]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

DT
[2,3]

NP
[2,4]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

Three possible places look for that
split k

NP, PRP
[0,1]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

DT
[2,3]

NP
[2,4]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

Three possible places look for that
split k

NP, PRP
[0,1]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

DT
[2,3]

NP
[2,4]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

Three possible places look for that
split k

NP, PRP
[0,1]

∅ ∅ S
[0,4]

VBD
[1,2]

∅ VP
[1,4]

DT
[2,3]

NP
[2,4]

NP, NN
[3,4]

IN
[4,5]

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

∅ ∅

DT
[2,3]

NP
[2,4]

∅ ∅

NP, NN
[3,4]

∅ ∅

IN
[4,5]

∅

PRP$
[5,6]

NNS
[6,7]

I shot an elephant in my pajamas

*elephant in
*an elephant in
*shot an elephant in
*I shot an elephant in

*in my
*elephant in my
*an elephant in my
*shot an elephant in my
*I shot an elephant in my

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

∅ ∅

DT
[2,3]

NP
[2,4]

∅ ∅

NP, NN
[3,4]

∅ ∅

IN
[4,5]

∅

PRP$
[5,6]

NP
[5,7]

NNS
[6,7]

I shot an elephant in my pajamas

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

∅ ∅

DT
[2,3]

NP
[2,4]

∅ ∅

NP, NN
[3,4]

∅ ∅

IN
[4,5]

∅ PP
[4,7]

PRP$
[5,6]

NP
[5,7]

NNS
[6,7]

I shot an elephant in my pajamas

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

∅ ∅

DT
[2,3]

NP
[2,4]

∅ ∅

NP, NN
[3,4]

∅ ∅ NP
[3,7]

IN
[4,5]

∅ PP
[4,7]

PRP$
[5,6]

NP
[5,7]

NNS
[6,7]

I shot an elephant in my pajamas

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

∅ ∅

DT
[2,3]

NP
[2,4]

∅ ∅ NP
[3,7]

NP, NN
[3,4]

∅ ∅ NP
[3,7]

IN
[4,5]

∅ PP
[4,7]

PRP$
[5,6]

NP
[5,7]

NNS
[6,7]

I shot an elephant in my pajamas

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

∅ ∅

DT
[2,3]

NP
[2,4]

∅ ∅ NP
[3,7]

NP, NN
[3,4]

∅ ∅ NP
[3,7]

IN
[4,5]

∅ PP
[4,7]

PRP$
[5,6]

NP
[5,7]

NNS
[6,7]

I shot an elephant in my pajamas

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

∅ ∅

DT
[2,3]

NP
[2,4]

∅ ∅ NP
[3,7]

NP, NN
[3,4]

∅ ∅ NP
[3,7]

IN
[4,5]

∅ PP
[4,7]

PRP$
[5,6]

NP
[5,7]

NNS
[6,7]

I shot an elephant in my pajamas

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

∅ ∅

DT
[2,3]

NP
[2,4]

∅ ∅ NP
[3,7]

NP, NN
[3,4]

∅ ∅ NP
[3,7]

IN
[4,5]

∅ PP
[4,7]

PRP$
[5,6]

NP
[5,7]

NNS
[6,7]

I shot an elephant in my pajamas

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

∅ ∅

DT
[2,3]

NP
[2,4]

∅ ∅ NP
[3,7]

NP, NN
[3,4]

∅ ∅ NP
[3,7]

IN
[4,5]

∅ PP
[4,7]

PRP$
[5,6]

NP
[5,7]

NNS
[6,7]

I shot an elephant in my pajamas

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

∅ ∅

DT
[2,3]

NP
[2,4]

∅ ∅ NP
[3,7]

NP, NN
[3,4]

∅ ∅ NP
[3,7]

IN
[4,5]

∅ PP
[4,7]

PRP$
[5,6]

NP
[5,7]

NNS
[6,7]

I shot an elephant in my pajamas

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

∅ ∅

DT
[2,3]

NP
[2,4]

∅ ∅ NP
[3,7]

NP, NN
[3,4]

∅ ∅ NP
[3,7]

IN
[4,5]

∅ PP
[4,7]

PRP$
[5,6]

NP
[5,7]

NNS
[6,7]

I shot an elephant in my pajamas

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

∅ ∅
VP1, VP2

[1,7]

DT
[2,3]

NP
[2,4]

∅ ∅ NP
[2,7]

NP, NN
[3,4]

∅ ∅ NP
[3,7]

IN
[4,5]

∅ PP
[4,7]

PRP$
[5,6]

NP
[5,7]

NNS
[6,7]

I shot an elephant in my pajamas

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅

VBD
[1,2]

∅ VP
[1,4]

∅ ∅
VP1, VP2

[1,7]

DT
[2,3]

NP
[2,4]

∅ ∅ NP
[2,7]

NP, NN
[3,4]

∅ ∅ NP
[3,7]

IN
[4,5]

∅ PP
[4,7]

PRP$
[5,6]

NP
[5,7]

NNS
[6,7]

I shot an elephant in my pajamas

Possibilities:

S1 → NP VP1
S2 → NP VP2
? → S PP
? → PRP VP1
? → PRP VP2

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅ S1, S2
[0,7]

VBD
[1,2]

∅ VP
[1,4]

∅ ∅
VP1, VP2

[1,7]

DT
[2,3]

NP
[2,4]

∅ ∅ NP
[2,7]

NP, NN
[3,4]

∅ ∅ NP
[3,7]

IN
[4,5]

∅ PP
[4,7]

PRP$
[5,6]

NP
[5,7]

NNS
[6,7]

I shot an elephant in my pajamas

Success! We’ve recognized a
total of two valid parses

CKY algorithm

NP, PRP
[0,1]

∅ ∅ S
[0,4]

∅ ∅ S1, S2
[0,7]

VBD
[1,2]

∅ VP
[1,4]

∅ ∅
VP1, VP2

[1,7]

DT
[2,3]

NP
[2,4]

∅ ∅ NP
[2,7]

NP, NN
[3,4]

∅ ∅ NP
[3,7]

IN
[4,5]

∅ PP
[4,7]

PRP$
[5,6]

NP
[5,7]

NNS
[6,7]

I shot an elephant in my pajamas

Runtime complexity?

CFG

• This use of CKY allows us to:

• check whether a sentence in grammatical in the language
defined by the CFG

• enumerate all possible parses for a sentence

• But it doesn’t tell us on its own which of those possible parses is
most likely.

PCFGs

• A PCFG gives us a mechanism for assigning scores (here,
probabilities) to different parses for the same sentence.

• We often care about is finding the single best parse with the highest
probability.

• We calculate the max probability parse using CKY by storing the
probability of each phrase within each cell as we build it up.

PRP: -3.21
[0,1]

∅ ∅ S: -19.2
[0,4]

∅ ∅ S: -35.7
[0,7]

VBD: -3.21
[1,2]

∅ VP: -14.3
[1,4]

∅ ∅
VP: -30.2

[1,7]

DT: -3.0
[2,3]

NP: -8.8
[2,4]

∅ ∅ NP: -24.7
[2,7]

NN: -3.5
[3,4]

∅ ∅ NP: -19.4
[3,7]

IN: -2.3
[4,5]

∅ PP: -13.6
[4,7]

PRP$:
-2.12
[5,6]

NP: -9.0
[5,7]

NNS: -4.6
[6,7]

I shot an elephant in my pajamas

As in Viterbi, backpointers let
us keep track on the path

through the chart that leads to
the best derivation

S

VP

NP

DT NN

NP

PP

NP

PRP NNSINVBDPRP

an elephant my pajamasinshotI

Formalisms
Dependency grammar

(Mel’čuk 1988; Tesnière 1959; Pāṇini)
Phrase structure grammar

(Chomsky 1957)

Dependency syntax

• Enables “Who Did What to Whom” kind of analysis for semantics.

• Syntactic structure = asymmetric, binary relations between words.

Tesnier 1959; Nivre 2005

Trees
• A dependency structure is a directed graph

G = (V,A) consisting of a set of vertices V
and arcs A between them. Typically
constrained to form a tree:

• Single root vertex with no incoming arcs

• Every vertex has exactly one incoming
arc except root (single head constraint)

• There is a unique path from the root to
each vertex in V (acyclic constraint)

Universal Dependencies

http://universaldependencies.org

English

Bulgarian

Czech

Swedish

Dependency parsing
• Transition-based parsing

• O(n)
• Only projective structures (pseudo-projective [Nivre and Nilsson 2005])

• Graph-based parsing

• O(n2)
• Projective and non-projective trees

Projectivity

• An arc between a head and dependent is projective if there is a path from
the head to every word between the head and dependent. Every word
between head and dependent is a descendent of the head.

Transition-based parsing

• Basic idea: parse a sentence into a dependency tree by training a
local classifier to predict a parser’s next action from its current
configuration.

Configuration

• Stack

• Input buffer of words

• Arcs in a parsed dependency tree

• Parsing = sequences of transitions through space of possible
configurations

book me the morning flight∅

stack action arc

book me the morning flight∅

stack action arc

LeftArc(label): assert relation
between head at stack1 and
dependent at stack2: remove
stack2

RightArc(label): assert relation
between head at stack2 and
dependent at stack1; remove
stack1

Shift: Remove word from front
of input buffer (∅) and push it
onto stack

☞

book me the morning flight

∅

stack action arc

LeftArc(label): assert relation
between head at stack1 (∅)
and dependent at stack2:
remove stack2

RightArc(label): assert relation
between head at stack2 and
dependent at stack1 (∅);
remove stack1 (∅)

Shift: Remove word from front
of input buffer (book) and
push it onto stack

☞

book

me the morning flight

∅

stack action arc

LeftArc(label): assert relation
between head at stack1
(book) and dependent at
stack2 (∅): remove stack2 (∅)

RightArc(label): assert relation
between head at stack2 (∅)
and dependent at stack1
(book); remove stack1 (book)

Shift: Remove word from front
of input buffer (me) and push
it onto stack

If we remove an element from the stack,
it can’t have any further dependents

☞

book

me

the morning flight

∅

stack action arc

iobj(book, me)
LeftArc(label): assert relation
between head at stack1 (me)
and dependent at stack2
(book): remove stack2 (book)

RightArc(label): assert relation
between head at stack2
(book) and dependent at
stack1 (me); remove stack1
(me)

Shift: Remove word from front
of input buffer (the) and push
it onto stack

☞

book

the morning flight

∅

stack action arc

iobj(book, me)
LeftArc(label): assert relation
between head at stack1
(book) and dependent at
stack2 (∅): remove stack2 (∅)

RightArc(label): assert relation
between head at stack2 (∅)
and dependent at stack1
(book); remove stack1 (book)

Shift: Remove word from front
of input buffer (the) and push
it onto stack

book

the

morning flight

∅

stack action arc

iobj(book, me)
LeftArc(label): assert relation
between head at stack1 (the)
and dependent at stack2
(book): remove stack2 (book)

RightArc(label): assert relation
between head at stack2
(book) and dependent at
stack1 (the); remove stack1
(the)

Shift: Remove word from front
of input buffer (morning) and
push it onto stack

☞

book

the

morning

flight

∅

stack action arc

iobj(book, me) LeftArc(label): assert relation
between head at stack1
(morning) and dependent at
stack2 (the): remove stack2
(the)

RightArc(label): assert relation
between head at stack2 (the)
and dependent at stack1
(morning); remove stack1
(morning)

Shift: Remove word from front
of input buffer (flight) and
push it onto stack

☞

book

the

morning

flight

∅

stack action arc

iobj(book, me) LeftArc(label): assert relation
between head at stack1
(flight) and dependent at
stack2 (morning): remove
stack2 (morning)

RightArc(label): assert relation
between head at stack2
(morning) and dependent at
stack1 (flight); remove stack1
(flight)

Shift: Remove word from front
of input buffer and push it
onto stack

☞
nmod(flight, morning)

book

the

flight

∅

stack action arc

iobj(book, me)
LeftArc(label): assert relation
between head at stack1
(flight) and dependent at
stack2 (the): remove stack2
(the)

RightArc(label): assert relation
between head at stack2 (the)
and dependent at stack1
(flight); remove stack1 (flight)

Shift: Remove word from front
of input buffer and push it
onto stack

☞
nmod(flight, morning)

det(flight, the)

book

flight

∅

stack action arc

iobj(book, me) LeftArc(label): assert relation
between head at stack1
(flight) and dependent at
stack2 (book): remove stack2
(book)

RightArc(label): assert relation
between head at stack2
(book) and dependent at
stack1 (flight); remove stack1
(flight)

Shift: Remove word from front
of input buffer and push it
onto stack

nmod(flight, morning)

det(flight, the)

☞ obj(book, flight)

book

∅

stack action arc

iobj(book, me)
LeftArc(label): assert relation
between head at stack1
(book) and dependent at
stack2 (∅): remove stack2 (∅)

RightArc(label): assert relation
between head at stack2 (∅)
and dependent at stack1
(book); remove stack1 (book)

Shift: Remove word from front
of input buffer and push it
onto stack

nmod(flight, morning)

det(flight, the)

obj(book, flight) ☞

root(∅, book)

This is our parse

arc

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(∅, book)

This is our parse

book

me

the morning flight

∅

stack action arc

LeftArc(label): assert relation
between head at stack1 (me)
and dependent at stack2
(book): remove stack2 (book)

RightArc(label): assert relation
between head at stack2
(book) and dependent at
stack1 (me); remove stack1
(me)

Shift: Remove word from front
of input buffer (the) and push
it onto stack

Let’s go back to this earlier
configuration

• This is a multiclass classification
problem: given the current
configuration — i.e., the elements in
the stack, the words in the buffer,
and the arcs created so far, what’s
the best transition?

Shift

LeftArc(nsubj)

RightArc(nsubj)

LeftArc(det)

RightArc(det)

LeftArc(obj)

RightArc(obj)

…

Output space 𝓨 =

Features are scoped over the stack,
buffer, and arcs created so far

feature example

stack1 = me 1

stack2 = book 1

stack1 POS = PRP 1

buffer1 = the 1

buffer2 = morning 1

buffer1 = today 0

buffer1 POS = RB 0

stack1 = me AND
stack2 = book

1

stack1 = PRP AND
stack2 = VB

1

iobj(book,*) in arcs 0

book
me

stack

the morning flight

buffer

arc

feature example β

stack1 = me 1 0.7

stack2 = book 1 1.3

stack1 POS =
PRP

1 6.4

buffer1 = the 1 -1.3

buffer2 =
morning

1 -0.07

buffer1 =
today

0 0.52

buffer1 POS =
RB

0 -2.1

stack1 = me
AND stack2 =

book

1 0

stack1 = PRP
AND stack2 =

VB

1 -0.1

iobj(book,*) in
arcs

0 3.2

Use any multiclass classification
model

• Logistic regression
• SVM
• NB
• Neural network

Training

Configuration features Label

<stack1 = me, 1>, <stack2 = book, 1>, <stack1 POS = PRP, 1>,
<buffer1 = the, 1>, Shift

<stack1 = me, 0>, <stack2 = book, 0>, <stack1 POS = PRP, 0>,
<buffer1 = the, 0>, RightArc(det)

<stack1 = me, 0>, <stack2 = book, 1>, <stack1 POS = PRP, 0>,
<buffer1 = the, 0>, RightArc(nsubj)

We’re training to predict the parser action —Shift, RightArc(label),
LeftArc(label)—given the featurized configuration

Neural Shift-Reduce Parsing

• We can train a neural shift-reduce parser by just changing how we:

• represent the configuration
• predict the label from that representation

• Otherwise training and prediction remains the same.

Chen and Manning (2014), “A Fast and Accurate Dependency Parser using Neural Networks”

Neural Shift-Reduce Parsing

Chen and Manning (2014), “A Fast and Accurate Dependency Parser using Neural Networks”

Neural Shift-Reduce Parsing

Chen and Manning (2014), “A Fast and Accurate Dependency Parser using Neural Networks”

Representation for configuration:

• Embeddings for words/POS tags on top
of stack

• Embeddings for words/POS tags at front
of buffer

• Embeddings for existing arc labels

Classifier:

• Feed-forward neural network (input
representation has a fixed
dimensionality)

Training data

Our training data comes from treebanks (native dependency
syntax or converted to dependency trees).

Oracle
• An algorithm for converting a gold-standard dependency tree into a

series of actions a transition-based parser should follow to yield the
tree.

Configuration features Label

<stack1 = “”>, <stack2 = “”>,
<stack1 POS = “”>, <buffer1 =

∅>,
Shift

<stack1 = ∅>, <stack2 = “”>,
<stack1 POS = ∅>, <buffer1 =

book>,
Shift

<stack1 = book>, <stack2 =∅>,
<stack1 POS = VB>, <buffer1 =

me>,
Shift

→

arc

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(∅, book)

This is our parse

book me the morning flight∅

stack action gold tree

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(∅, book)

book me the morning flight∅

stack action gold tree

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(∅, book)

Choose LeftArc(label) if
label(stack1,stack2) exists in
gold tree. Remove stack2.

Else choose RightArc(label) if
label(stack2, stack1) exists in
gold tree and all arcs
label(stack1, *). have been
generated. Remove stack1

Else shift: Remove word from
front of input buffer and push
it onto stack

book me the morning flight

∅

stack action gold tree

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(∅, book)

Choose LeftArc(label) if
label(stack1,stack2) exists in
gold tree. Remove stack2.

Else choose RightArc(label) if
label(stack2, stack1) exists in
gold tree and all arcs
label(stack1, *). have been
generated. Remove stack1

Else shift: Remove word from
front of input buffer and push
it onto stack

root(∅, book) exists but book
has dependents in gold tree!

book

me the morning flight

∅

stack action gold tree

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(∅, book)

Choose LeftArc(label) if
label(stack1,stack2) exists in
gold tree. Remove stack2.

Else choose RightArc(label) if
label(stack2, stack1) exists in
gold tree and all arcs
label(stack1, *). have been
generated. Remove stack1

Else shift: Remove word from
front of input buffer and push
it onto stack

iobj(book, me) exists and me
has no dependents in gold tree

book

me

the morning flight

∅

stack action gold tree

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(∅, book)

Choose LeftArc(label) if
label(stack1,stack2) exists in
gold tree. Remove stack2.

Else choose RightArc(label) if
label(stack2, stack1) exists in
gold tree and all arcs
label(stack1, *). have been
generated. Remove stack1

Else shift: Remove word from
front of input buffer and push
it onto stack

✅

book

the

morning flight

∅

stack action

Choose LeftArc(label) if
label(stack1,stack2) exists in
gold tree. Remove stack2.

Else choose RightArc(label) if
label(stack2, stack1) exists in
gold tree and all arcs
label(stack1, *). have been
generated. Remove stack1

Else shift: Remove word from
front of input buffer and push
it onto stack

gold tree

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(∅, book)

✅

book

the

morning

flight

∅

stack action gold tree

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(∅, book)

Choose LeftArc(label) if
label(stack1,stack2) exists in
gold tree. Remove stack2.

Else choose RightArc(label) if
label(stack2, stack1) exists in
gold tree and all arcs
label(stack1, *). have been
generated. Remove stack1

Else shift: Remove word from
front of input buffer and push
it onto stack

✅

book

the

morning

flight

∅

stack action gold tree

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(∅, book)

Choose LeftArc(label) if
label(stack1,stack2) exists in
gold tree. Remove stack2.

Else choose RightArc(label) if
label(stack2, stack1) exists in
gold tree and all arcs
label(stack1, *). have been
generated. Remove stack1

Else shift: Remove word from
front of input buffer and push
it onto stack

nmod(flight,morning)

✅

✅

book

the

flight

∅

stack action gold tree

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(∅, book)

Choose LeftArc(label) if
label(stack1,stack2) exists in
gold tree. Remove stack2.

Else choose RightArc(label) if
label(stack2, stack1) exists in
gold tree and all arcs
label(stack1, *). have been
generated. Remove stack1

Else shift: Remove word from
front of input buffer and push
it onto stack

det(flight,the)

✅

✅

✅

book

flight

∅

stack action gold tree

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(∅, book)

Choose LeftArc(label) if
label(stack1,stack2) exists in
gold tree. Remove stack2.

Else choose RightArc(label) if
label(stack2, stack1) exists in
gold tree and all arcs
label(stack1, *). have been
generated. Remove stack1

Else shift: Remove word from
front of input buffer and push
it onto stack

obj(book,flight)

✅

✅

✅

✅

book

∅

stack action gold tree

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(∅, book)

Choose LeftArc(label) if
label(stack1,stack2) exists in
gold tree. Remove stack2.

Else choose RightArc(label) if
label(stack2, stack1) exists in
gold tree and all arcs
label(stack1, *). have been
generated. Remove stack1

Else shift: Remove word from
front of input buffer and push
it onto stack

root(∅, book) and book has no
more dependents we haven’t

seen

✅

✅

✅

✅

✅

∅

stack action gold tree

iobj(book, me)

nmod(flight, morning)

det(flight, the)

obj(book, flight)

root(∅, book)

Choose LeftArc(label) if
label(stack1,stack2) exists in
gold tree. Remove stack2.

Else choose RightArc(label) if
label(stack2, stack1) exists in
gold tree and all arcs
label(stack1, *). have been
generated. Remove stack1

Else shift: Remove word from
front of input buffer and push
it onto stack

✅

✅

✅

✅

✅

With only ∅ left on the stack and nothing in
the buffer, we’re done

Shift

Shift

Shift

RightArc(iobj)

Shift

Shift

Shift

LeftArc(nmod)

LeftArc(det)

RightArc(obj)

RightArc(root)

Logistics

• Homework 4 is due this Friday 3/8 (start now if you haven’t already)

• Open AI API keys

• Quiz 6 will be out on Friday afternoon (due Monday)

• Next week: Semantics

