Natural Language Processing

Info 159/259
Lecture 11: Neural sequence labeling (Feb 28, 2024)
Many slides \& instruction ideas borrowed from:
David Bamman, Dan Jurafsky \& Greg Durrett

Logistics

- Exam1 grading is being finalized.
- No homework this week
- Homework 4 will be released by Friday.
- AP1 is due this Sunday March 3
- Quiz 4 will be out this Friday afternoon (due Monday).
- Today: Reviewing HMM, followed by Neural Seq. Labeling

POS tagging

Labeling the tag that's correct for the context.

Fruit flies like a banana

Time flies like an arrow

Sequence labeling

$$
\begin{aligned}
& x=\left\{x_{1}, \ldots, x_{n}\right\} \\
& y=\left\{y_{1}, \ldots, y_{n}\right\}
\end{aligned}
$$

- For a set of inputs x with n sequential time steps, one corresponding label y_{i} for each x_{i}
- Model correlations in the labels y.

Generative vs. Discriminative models

- Generative models specify a joint distribution over the labels and the data. With this you could generate new data

$$
P(x, y)=P(y) P(x \mid y)
$$

- Discriminative models specify the conditional distribution of the label y given the data x . These models focus on how to discriminate between the classes

$$
P(y \mid x)
$$

Generative Model

$$
P(x, y)=P(x \mid y) P(y)
$$

x	time	flies	like	an	arrow
y	NN	VBZ	IN	DT	NN

$\max _{y} P(x \mid y) P(y)$

Estimating the seq. Prob.

$$
\begin{aligned}
P\left(y_{i}, \ldots, y_{n}\right) & =P\left(y_{1}\right) \\
& \times P\left(y_{2} \mid y_{1}\right) \\
& \times P\left(y_{3} \mid y_{1}, y_{2}\right) \\
& \cdots \\
& \times P\left(y_{n} \mid y_{1}, \ldots, y_{n-1}\right)
\end{aligned}
$$

- Remember: a Markov assumption is an approximation to this exact decomposition (the chain rule of probability)

Hidden Markov Model

$\max P(x \mid y) P(y)$

Prior probability of label sequence

$$
P\left(y_{1}, \cdots, y_{n}\right) \approx \prod_{i=1}^{n} P\left(y_{i} \mid y_{i-1}\right)
$$

- We'll make a first-order Markov assumption and calculate the joint probability as the product the individual factors conditioned only on the previous tag.

Hidden Markov Model

First-order HMM

$$
P\left(y_{1} \ldots, y_{n}\right) \approx \prod_{i=1}^{n} P\left(y_{i} \mid y_{i-1}\right)
$$

$$
P\left(y_{1}, \ldots, y_{n}\right) \approx \prod_{i=1}^{n} P\left(y_{i} \mid y_{i-2}, y_{i-1}\right)
$$

$$
P\left(y_{1} \ldots, y_{n}\right) \approx \prod_{i=1}^{n} P\left(y_{i} \mid y_{i-3}, y_{i-2}, y_{i-1}\right)
$$

Hidden Markov Model

$\max _{y} P(x \mid y) P(y)$
 y

$$
P(x \mid y)=P\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{n}\right)
$$

$$
P\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{n}\right) \approx \prod_{i=1}^{N} P\left(x_{i} \mid y_{i}\right)
$$

- Here again we'll make a strong assumption: the probability of the word we see at a given time step is only dependent on its own label, no matter of the Markov order used for $\mathrm{P}(\mathrm{y})$.

HMM

$$
P\left(x_{1}, \cdots, x_{n^{\prime}} y_{1} \ldots, y_{n}\right) \approx \prod_{i=1}^{n} P\left(y_{i} \mid y_{i-1}\right) \prod_{i=1}^{n} P\left(x_{i} \mid y_{i}\right)
$$

HMM

HMM

$$
P(V B \mid N N P)
$$

$$
P(\text { was } \mid V B)
$$

Parameter estimation

$$
P\left(y_{t} \mid y_{t-1}\right) \quad \frac{c\left(y_{1}, y_{2}\right)}{c\left(y_{1}\right)}
$$

MLE for both is just counting and normalizing

$$
P\left(x_{t} \mid y_{t}\right)
$$

$$
\frac{c(x, y)}{c(y)}
$$

Transition probabilities

	NNP	MD	VB	JJ	NN	RB	DT
$\langle s>$	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

Figure 10.5 The A transition probabilities $P\left(t_{i} \mid t_{i-1}\right)$ computed from the WSJ corpus without smoothing. Rows are labeled with the conditioning event; thus $P(V B \mid M D)$ is 0.7968 .

Emission probabilities

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0.000097	0
NN	0	0.000200	0.000223	0.000006	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

Figure 10.6 Observation likelihoods B computed from the WSJ corpus without smoothing.

Decoding

- Decoding: Finding the optimal path for a sequence using transition and emission parameters.
- Greedy decoding: proceed left to right, committing to the best tag for each time step (given the sequence seen so far)

Fruit	flies	like	a	banana
NN	VB	IN	DT	NN

Decoding

The horse raced past the barn fell

Decoding

The horse raced past the barn fell

Information later on in the sentence can influence the best tags earlier on.

All paths

END							
DT							
NNP							
VB							
NN							
MD							
START							
	\wedge	Janet	will	back	the	bill	$\$$

Ideally, what we want is to calculate the joint probability of each path and pick the one with the highest probability. But for N time steps and K labels, number of possible paths $=K^{N}$

5 word sentence with 45 Penn Treebank tags

$$
45^{5}=184,528,125 \text { different paths }
$$

$$
45^{20}=1.16 \mathrm{e} 33 \text { different paths }
$$

Viterbi algorithm

- Basic idea: if an optimal path through a sequence uses label L at time T, then it must have used an optimal path to get to label L at time T
- We can discard all non-optimal paths up to label L at time T

END							
DT							
NNP							
VB							
NN							
MD							
START							
	\wedge	Janet	will	back	the	bill	$\$$

- At each time step t ending in label K , we find the max probability of any path that led to that state

END	
DT	$v_{1}(\mathrm{DT})$
NNP	
VB	
NN $(N N P)$	
MD	
START	

Janet

What's the HMM probability of ending in Janet = NNP?

$$
\begin{gathered}
P\left(y_{t} \mid y_{t-1}\right) P\left(x_{t} \mid y_{t}\right) \\
P(\text { NNP } \mid \text { START }) P(\text { Janet } \mid \text { NNP })
\end{gathered}
$$

END		
DT		$v_{1}(\mathrm{DT})$
NNP		$v_{1}(\mathrm{NNP})$
VB		$v_{1}(\mathrm{VB})$
NN		$v_{1}(\mathrm{NN})$
MD	$v_{1}(\mathrm{MD})$	
START		

Best path through time step 1 ending in tag y (trivially - best path for all is just START)

$$
v_{1}(y)=\max _{u \in \mathcal{Y}}\left[P\left(y_{t}=y \mid y_{t-1}=u\right) P\left(x_{t} \mid y_{t}=y\right)\right]
$$

END		
DT	$v_{1}(\mathrm{DT})$	$v_{2}(\mathrm{DT})$
NNP		$v_{1}(\mathrm{NNP})$
VB		$v_{2}(\mathrm{NNP})$
NN		$v_{1}(\mathrm{VB})$
MD	$v_{1}(\mathrm{NN})$	$v_{2}(\mathrm{vB})$
START		$v_{1}(\mathrm{ND})$
		$v_{2}(\mathrm{MD})$

What's the max HMM probability of ending in will $=$ MD?

First, what's the HMM probability of a single path ending in will = MD?

END		
DT	$v_{1}(\mathrm{DT})$	$v_{2}(\mathrm{DT})$
NNP		$v_{1}(\mathrm{NNP})$
VB	$v_{2}(\mathrm{NNP})$	
NN		$v_{1}(\mathrm{VB})$
MD	$v_{2}(\mathrm{VB})$	
START	$v_{2}(\mathrm{NN})$	
		$v_{1}(\mathrm{MD})$
	$v_{2}(\mathrm{MD})$	

Janet will

$$
P\left(y_{1} \mid S T A R T\right) P\left(x_{1} \mid y_{1}\right) \times P\left(y_{2}=\mathrm{MD} \mid y_{1}\right) P\left(x_{2} \mid y_{2}=\mathrm{MD}\right)
$$

END		
DT		
NNP		$v_{1}(\mathrm{DT})$
VB	$v_{2}(\mathrm{DT})$	
NN $)$	$v_{2}(\mathrm{NNP})$	
MD		$v_{1}(\mathrm{VB})$
START		$v_{2}(\mathrm{VB})$
	$v_{1}(\mathrm{NN})$	$v_{2}(\mathrm{NN})$

Best path through time step 2 ending in tag MD

```
P(DT | START ) }\timesP(\mathrm{ Janet | DT ) }\timesP(\mp@subsup{y}{t}{}=\textrm{MD}|P(\mp@subsup{y}{t-1}{}=\textrm{DT})\timesP(will | yt = MD )
P(NNP | START ) }\timesP(\mathrm{ Janet |NNP ) }\timesP(\mp@subsup{y}{t}{}=\textrm{MD}|P(\mp@subsup{y}{t-1}{}=\textrm{NNP})\timesP(will | y y = MD )
P(VB | START ) }\timesP(\mathrm{ Janet }|\textrm{VB})\timesP(\mp@subsup{y}{t}{}=\textrm{MD}|P(\mp@subsup{y}{t-1}{}=\textrm{VB})\timesP(\mathrm{ will | y yt = MD }
P(NN | START ) }\timesP(\mathrm{ Janet | NN ) }\timesP(\mp@subsup{y}{t}{}=\textrm{MD}|P(\mp@subsup{y}{t-1}{}=\textrm{NN})\timesP(will|\mp@subsup{y}{t}{}=\textrm{MD}
P(MD | START ) }\timesP(\mathrm{ Janet | MD ) }\timesP(\mp@subsup{y}{t}{}=\textrm{MD}|P(\mp@subsup{y}{t-1}{}=\textrm{MD})\timesP(\mathrm{ will | }\mp@subsup{y}{t}{}=\textrm{MD}
```

Let's say the best path ending $\mathrm{y}_{2}=\mathrm{MD}$ includes $y_{1}=$ NNP, with probability 0.0090 .

Under our first-order Markov assumption, if $\mathrm{y}_{2}=\mathrm{MD}$ is in the best path for the complete sequence, $y_{1}=$ NNP must be as well. That means we can forget every other path ending in $\mathrm{y}_{2}=\mathrm{MD}$ that does not have $y_{1}=N N P$.

END		
DT	$v_{1}(\mathrm{DT})$	$v_{2}(\mathrm{DT})$
NNP	$v_{1}(\mathrm{NNP})$	$v_{2}(\mathrm{NNP})$
VB	$v_{1}(\mathrm{VB})$	$v_{2}(\mathrm{VB})$
NN	$v_{1}(\mathrm{NN})$	$v_{2}(\mathrm{NN})$
MD	$v_{1}(\mathrm{MD})$	$v_{2}(\mathrm{MD})$
START		

	Janet
0.0003	$P($ DT \mid START $) \times P($ Janet \mid DT $) \times P\left(y_{t}=\mathrm{MD} \mid P\left(y_{t-1}=\mathrm{DT}\right) \times P\left(\right.\right.$ will $\left.\mid y_{t}=\mathrm{MD}\right)$
0.0090	$P($ NNP \mid START $) \times P($ Janet \mid NNP $) \times P\left(y_{t}=\mathrm{MD} \mid P\left(y_{t-1}=\mathrm{NNP}\right) \times P\left(\right.\right.$ will $\left.\mid y_{t}=\mathrm{MD}\right)$
0.0001	$P(\mathrm{VB} \mid \mathrm{START}) \times P($ Janet $\mid \mathrm{VB}) \times P\left(y_{t}=\mathrm{MD} \mid P\left(y_{t-1}=\mathrm{VB}\right) \times P\left(\right.\right.$ will $\left.\mid y_{t}=\mathrm{MD}\right)$
0.0045	$\mathrm{N} \mid$ START $) \times P($ Janet \mid NN $) \times P\left(y_{t}=\mathrm{MD} \mid P\left(y_{t-1}=\mathrm{NN}\right) \times P\left(\right.\right.$ will $\left.\mid y_{t}=\mathrm{MD}\right)$
0.0002	$P(\mathrm{MD} \mid$ START $) \times P($ Janet $\mid \mathrm{MD}) \times P\left(y_{t}=\mathrm{MD} \mid P\left(y_{t-1}=\mathrm{MD}\right) \times P\left(\right.\right.$ will $\left.\mid y_{t}=\mathrm{MD}\right)$

None of the grey out paths could possibly be in the final optimal path, so we can forget them going forward.

To calculate this full probability, notice that we can reuse information we've already computed.

```
P(DT | START ) }\timesP(\mathrm{ Janet | DT ) }\timesP(\mp@subsup{y}{t}{}=MD|P(\mp@subsup{y}{t-1}{}=DT)\timesP(\mathrm{ will | y 
    v
P(NNP | START) }\timesP(\mathrm{ Janet | NNP )}\timesP(\mp@subsup{y}{t}{}=MD|P(\mp@subsup{y}{t-1}{}=NNP)\timesP(will | y yt =MD
    v
P(VB | START ) }\timesP(\mathrm{ Janet | VB ) }\timesP(\mp@subsup{y}{t}{}=MD|P(\mp@subsup{y}{t-1}{}=VB)\timesP(will | y yt=MD
    v
```

END		
DT	$v_{1}(\mathrm{DT})$	$v_{2}(\mathrm{DT})$
NNP		$v_{1}(\mathrm{NNP})$
VB		$v_{2}(\mathrm{NNP})$
NN		$v_{1}(\mathrm{VB})$
MD	$v_{1}(\mathrm{NB})$	
START		$v_{2}(N N)$

Janet will

$$
v_{t}(y)=\max _{u \in \mathcal{Y}}\left[v_{t-1}(u) \times P\left(y_{t}=y \mid y_{t-1}=u\right) P\left(x_{t} \mid y_{t}=y\right)\right]
$$

Every y at time step t may have

Janet will a different u at time step t-1 that leads to its max.

Once we've determined that u for each y, we can forget all of the other values of u for that each y, since we know they cannot be on the optimal path for the entire sequence.

$$
v_{t}(y)=\max _{u \in \mathcal{Y}}\left[v_{t-1}(u) \times P\left(y_{t}=y \mid y_{t-1}=u\right) P\left(x_{t} \mid y_{t}=y\right)\right]
$$

END			
DT	$v_{1}(\mathrm{DT})$	$v_{2}(\mathrm{DT})$	$v_{3}(\mathrm{DT})$
NNP		$v_{1}(\mathrm{NNP})$	$v_{2}(\mathrm{NNP})$
VB	$v_{3}(\mathrm{NNP})$		
NN		$v_{1}(\mathrm{VB})$	$v_{2}(\mathrm{VB})$
MD	$v_{3}(\mathrm{VB})$		
START	$v_{1}(\mathrm{MD})$	$v_{2}(\mathrm{NN})$	$v_{2}(\mathrm{mD})$
			$v_{3}(\mathrm{MD})$
	Janet	will	back

25 paths ending in back $=\mathrm{VB}$

$$
\begin{aligned}
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=D T\right) P\left(x_{2}=\text { will } \mid y_{2}=D T\right) P\left(y_{2}=D T \mid y_{1}=D T\right) P\left(x_{1}=\text { Janet } \mid y_{1}=D T\right) P\left(y_{1}=D T \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=D T\right) P\left(x_{2}=\text { will } \mid y_{2}=D T\right) P\left(y_{2}=D T \mid y_{1}=N N P\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N P\right) P\left(y_{1}=N N P \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=D T\right) P\left(x_{2}=\text { will } \mid y_{2}=D T\right) P\left(y_{2}=D T \mid y_{1}=V B\right) P\left(x_{1}=\text { Janet } \mid y_{1}=V B\right) P\left(y_{1}=V B \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=D T\right) P\left(x_{2}=\text { will } \mid y_{2}=D T\right) P\left(y_{2}=D T \mid y_{1}=N N\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N\right) P\left(y_{1}=N N \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=D T\right) P\left(x_{2}=\text { will } \mid y_{2}=D T\right) P\left(y_{2}=D T \mid y_{1}=M D\right) P\left(x_{1}=\text { Janet } \mid y_{1}=M D\right) P\left(y_{1}=M D \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N P\right) P\left(x_{2}=\text { will } \mid y_{2}=N N P\right) P\left(y_{2}=N N P \mid y_{1}=D T\right) P\left(x_{1}=\text { Janet } \mid y_{1}=D T\right) P\left(y_{1}=D T \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N P\right) P\left(x_{2}=\text { will } \mid y_{2}=N N P\right) P\left(y_{2}=N N P \mid y_{1}=N N P\right) P\left(x_{1}=J a n e t \mid y_{1}=N N P\right) P\left(y_{1}=N N P \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N P\right) P\left(x_{2}=\text { will } \mid y_{2}=N N P\right) P\left(y_{2}=N N P \mid y_{1}=V B\right) P\left(x_{1}=\text { Janet } \mid y_{1}=V B\right) P\left(y_{1}=V B \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N P\right) P\left(x_{2}=\text { will } \mid y_{2}=N N P\right) P\left(y_{2}=N N P \mid y_{1}=N N\right) P\left(x_{1}=\operatorname{Janet} \mid y_{1}=N N\right) P\left(y_{1}=N N \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N P\right) P\left(x_{2}=\text { will } \mid y_{2}=N N P\right) P\left(y_{2}=N N P \mid y_{1}=M D\right) P\left(x_{1}=\text { Janet } \mid y_{1}=M D\right) P\left(y_{1}=M D \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=V B\right) P\left(x_{2}=\text { will } \mid y_{2}=V B\right) P\left(y_{2}=V B \mid y_{1}=D T\right) P\left(x_{1}=\text { Janet } \mid y_{1}=D T\right) P\left(y_{1}=D T \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=V B\right) P\left(x_{2}=\text { will } \mid y_{2}=V B\right) P\left(y_{2}=V B \mid y_{1}=N N P\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N P\right) P\left(y_{1}=N N P \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=V B\right) P\left(x_{2}=\text { will } \mid y_{2}=V B\right) P\left(y_{2}=V B \mid y_{1}=V B\right) P\left(x_{1}=\text { Janet } \mid y_{1}=V B\right) P\left(y_{1}=V B \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=V B\right) P\left(x_{2}=\text { will } \mid y_{2}=V B\right) P\left(y_{2}=V B \mid y_{1}=N N\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N\right) P\left(y_{1}=N N \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=V B\right) P\left(x_{2}=\text { will } \mid y_{2}=V B\right) P\left(y_{2}=V B \mid y_{1}=M D\right) P\left(x_{1}=\text { Janet } \mid y_{1}=M D\right) P\left(y_{1}=M D \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N\right) P\left(x_{2}=\text { will } \mid y_{2}=N N\right) P\left(y_{2}=N N \mid y_{1}=D T\right) P\left(x_{1}=\text { Janet } \mid y_{1}=D T\right) P\left(y_{1}=D T \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N\right) P\left(x_{2}=\text { will } \mid y_{2}=N N\right) P\left(y_{2}=N N \mid y_{1}=N N P\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N P\right) P\left(y_{1}=N N P \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N\right) P\left(x_{2}=\text { will } \mid y_{2}=N N\right) P\left(y_{2}=N N \mid y_{1}=V B\right) P\left(x_{1}=\text { Janet } \mid y_{1}=V B\right) P\left(y_{1}=V B \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N\right) P\left(x_{2}=\text { will } \mid y_{2}=N N\right) P\left(y_{2}=N N \mid y_{1}=N N\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N\right) P\left(y_{1}=N N \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N\right) P\left(x_{2}=\text { will } \mid y_{2}=N N\right) P\left(y_{2}=N N \mid y_{1}=M D\right) P\left(x_{1}=\text { Janet } \mid y_{1}=M D\right) P\left(y_{1}=M D \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=M D\right) P\left(x_{2}=\text { will } \mid y_{2}=M D\right) P\left(y_{2}=M D \mid y_{1}=D T\right) P\left(x_{1}=\text { Janet } \mid y_{1}=D T\right) P\left(y_{1}=D T \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=M D\right) P\left(x_{2}=\text { will } \mid y_{2}=M D\right) P\left(y_{2}=M D \mid y_{1}=N N P\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N P\right) P\left(y_{1}=N N P \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=M D\right) P\left(x_{2}=\text { will } \mid y_{2}=M D\right) P\left(y_{2}=M D \mid y_{1}=V B\right) P\left(x_{1}=\text { Janet } \mid y_{1}=V B\right) P\left(y_{1}=V B \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=M D\right) P\left(x_{2}=\text { will } \mid y_{2}=M D\right) P\left(y_{2}=M D \mid y_{1}=N N\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N\right) P\left(y_{1}=N N \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=M D\right) P\left(x_{2}=\text { will } \mid y_{2}=M D\right) P\left(y_{2}=M D \mid y_{1}=M D\right) P\left(x_{1}=\text { Janet } \mid y_{1}=M D\right) P\left(y_{1}=M D \mid S T A R T\right)
\end{aligned}
$$

In calculating the best path ending in $x_{3}=$ back and $y_{3}=V B$, we can forget every other path that we've already determined to be suboptimal.

END	
DT	$\mathrm{v}_{1}(\mathrm{DT}) \longleftarrow \mathrm{v}_{2}(\mathrm{DT})$
NNP	$v_{1}(N N P) \searrow_{v_{2}(N N P)}$
VB	$v_{1}(V B)$
NN	$\mathrm{v}_{1}(\mathrm{NN}) \not \mathrm{v}_{2}(\mathrm{NN})$
MD	$\mathrm{v}_{1}(\mathrm{MD}) \quad \mathrm{v}_{2}(\mathrm{MD})$
START	

In calculating the best path ending in $x_{3}=$ back and $y_{3}=V B$, we can forget every other path that we've already determined to be suboptimal.

END	
DT	$\mathrm{v}_{1}(\mathrm{DT}) \longleftarrow \mathrm{v}_{2}(\mathrm{DT})$
NNP	$v_{1}(N N P) \searrow_{v_{2}(N N P)}$
VB	$v_{1}(V B)$
NN	$\mathrm{v}_{1}(\mathrm{NN}) \not \mathrm{v}_{2}(\mathrm{NN})$
MD	$\mathrm{v}_{1}(\mathrm{MD}) \quad \mathrm{v}_{2}(\mathrm{MD})$
START	

END			
DT	$v_{1}(\mathrm{DT})$	$v_{2}(\mathrm{DT})$	$v_{3}(\mathrm{DT})$
NNP		$v_{1}(\mathrm{NNP})$	$v_{2}(\mathrm{NNP})$
VB	$v_{3}(\mathrm{NNP})$		
NN		$v_{1}(\mathrm{VB})$	$v_{2}(\mathrm{VB})$
MD	$v_{3}(\mathrm{VB})$		
START	$v_{1}(\mathrm{NN})$	$v_{3}(\mathrm{NN})$	
		$v_{2}(\mathrm{MD})$	$v_{3}(\mathrm{MD})$
	Janet	will	back

So for every label at every time step, we only need to keep track of which label at the previous time step t - 1 led to the highest joint probability at that time step t.

END					
DT	$\mathrm{v}_{1}(\mathrm{DT})$	$\mathrm{v}_{2}(\mathrm{DT}$)	v3(DT)	v_{4} (DT)	v5(DT)
NNP	$\mathrm{v}_{1}(\mathrm{NNP})$	v_{2} (NNP)	$\mathrm{v}_{3}(\mathrm{NNP}$)	$\mathrm{v}_{4}(\mathrm{NNP}$)	$\mathrm{v}_{5}(\mathrm{NNP}$)
VB	$\mathrm{v}_{1}(\mathrm{VB})$	$\mathrm{v}_{2}(\mathrm{VB})$	$\mathrm{V}_{3}(\mathrm{VB})$	$\mathrm{v}_{4}(\mathrm{MD})$	$\mathrm{v}_{5}(\mathrm{MD})$
NN	$\mathrm{v}_{1}(\mathrm{NN})$	$\mathrm{v}_{2}(\mathrm{NN})$	$\mathrm{v}_{3}(\mathrm{NN})$	$\mathrm{V}_{4}(\mathrm{NN})$	v5(NN)
MD	$\mathrm{v}_{1}(\mathrm{MD})$	$\mathrm{v}_{2}(\mathrm{MD})$	V3(MD)	$\mathrm{v}_{4}(\mathrm{MD})$	$\mathrm{v}_{5}(\mathrm{MD})$
START					

END						$\mathrm{V}_{\mathrm{T}}(\mathrm{END})$
DT	v_{1} (DT)	$\mathrm{v}_{2}(\mathrm{DT})$	v_{3} (DT)	v_{4} (DT)	$\mathrm{v}_{5}(\mathrm{DT})$	
NNP	$\mathrm{v}_{1}(\mathrm{NNP}$)	$\mathrm{v}_{2}(\mathrm{NNP}$)	$\mathrm{v}_{3}(\mathrm{NNP}$)	v_{4} (NNP)	V_{5} (NNP)	
VB	$\mathrm{v}_{1}(\mathrm{VB})$	$\mathrm{v}_{2}(\mathrm{VB})$	$\mathrm{v}_{3}(\mathrm{VB})$	$\mathrm{V}_{4}(\mathrm{MD})$	vs(MD)	
NN	$\mathrm{v}_{1}(\mathrm{NN})$	$\mathrm{v}_{2}(\mathrm{NN})$	$\mathrm{v}_{3}(\mathrm{NN})$	$\mathrm{V}_{4}(\mathrm{NN})$	$\mathrm{v}_{5}(\mathrm{NN}$)	
MD	$\mathrm{v}_{1}(\mathrm{MD})$	$\mathrm{v}_{2}(\mathrm{MD})$	$\mathrm{V}_{3}(\mathrm{MD})$	$\mathrm{v}_{4}(\mathrm{MD})$	$\mathrm{v}_{5}(\mathrm{MD})$	
START						
	Janet	will	back	the	bill	

$\mathrm{v}_{\mathrm{T}}(\mathrm{END})$ encodes the best path through the entire sequence

For each timestep $t+$ label, keep track of the max element from t-1 to reconstruct best path

Named entity recognition

[tim cook]per is the ceo of [apple]org

- Identifying spans of text that correspond to typed entities
- Another application of sequence labeling

Named entity recognition

Type	Tag	Sample Categories	Example sentences
People	PER	people, characters	Turing is a giant of computer science.
Organization	ORG	companies, sports teams	The IPCC warned about the cyclone.
Location	LOC	regions, mountains, seas	The Mt. Sanitas loop is in Sunshine Canyon.
Geo-Political	GPE	countries, states, provinces	Palo Alto is raising the fees for parking.
Entity			
Facility	FAC	bridges, buildings, airports	Consider the Golden Gate Bridge.
Vehicles	VEH	planes, trains, automobiles	It was a classic Ford Falcon.

Figure 17.1 A list of generic named entity types with the kinds of entities they refer to.

Named entity recognition

protein

- GENIA corpus of MEDLINE abstracts (biomedical)
cell line
cell type
We have shown that [interleukin-1] protein ([IL-1] protein) and [IL-2]protein control [IL-2 receptor alpha (IL-2R alpha) gene]dna transcription in [CD4-CD8- murine T lymphocyte precursors]cell LINE

BIO notation

\section*{| B-PERS | I-PERS | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| B-ORG | | | | | |
 tim cook is the ceo of apple}

- Beginning of entity
- Inside entity
- Outside entity
[tim cook] $]_{\text {PER }}$ is the ceo of [apple] $]_{\text {ORG }}$

Named entity recognition

B-PER B-PER

After he saw Harry Tom went to the store

Evaluation

- We evaluate NER with precision/recall/F1 over typed chunks.

Evaluation

	1	2	3	4	5	6
	tim	cook	is	the	CEO	of
gold	B-PER	I-PER	O	O	O	O
system	B-PER	O	O	O ORG		

<start, end, type>

	gold	system	
Precision	$1 / 3$		$<1,2$, PER $>$

Sequence labeling

$$
\begin{aligned}
& x=\left\{x_{1}, \ldots, x_{n}\right\} \\
& y=\left\{y_{1}, \ldots, y_{n}\right\}
\end{aligned}
$$

- For a set of inputs x with n sequential time steps, one corresponding label y_{i} for each x_{i}
- Model correlations in the labels y.

Generative vs. Discriminative models

- Generative models specify a joint distribution over the labels and the data. With this you could generate new data.

$$
P(x, y)=P(y) P(x \mid y)
$$

- Discriminative models specify the conditional distribution of the label y given the data x . These models focus on how to discriminate between the classes

$$
P(y \mid x)
$$

Maximum Entropy Markov Model (MEMM)

General maxent form

$$
\arg \max _{y} P(y \mid x, \beta)
$$

Maxent with first-order Markov assumption: Maximum Entropy

Markov Model

$$
\arg \max _{y} \prod_{i=1}^{n} P\left(y_{i} \mid y_{i-1}, x\right)
$$

MEMM

MEMMs condition on the entire input

MEMM

Features

$$
f\left(y_{i}, y_{i-1} ; x_{1}, \ldots, x_{n}\right)
$$

feature	example
$x_{i}=$ man	1
$y_{i-1}=J J$	1
$i=n$ (last word of sentence)	1
x_{i} ends in -ly	0

Recurrent neural network

- RNNs allow arbitarily-sized conditioning contexts and condition on the entire sequence history.

RNNs for language modeling are already performing a kind of sequence labeling: at each time step, predict the word from \boldsymbol{v} conditioned on the context

For POS tagging, predict the tag from \boldsymbol{y} conditioned on the context

RNNs for POS

```
NN TO VB
```

will to fight

- To make a prediction for y_{t}, RNNs condition on all input seen through time $\mathrm{t}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{t}}\right)$
- But knowing something about the future can help ($\mathrm{x}_{\mathrm{t}+1}, \ldots, \mathrm{x}_{\mathrm{n}}$)

Bidirectional RNN

- A powerful alternative is make predictions conditioning both on the past and the future.
- Two RNNs
- One running left-to-right
- One right-to-left
- Each produces an output vector at each time step, which we concatenate

Bidirectional RNN

backward RNN

Bidirectional RNN

RNNs for POS tagging

RNNs for POS tagging

amazon and spotify's streaming services are going to
devour apple and its music purchasing model

Prediction:
Can the information from far away get to the time step that needs it?

Training:
Can error reach that far back during backpropagation?

RNNs

- Recurrent networks are deep in that they involve one "layer" for each time step (e.g., words in a sentence)
- Vanishing gradient problem: as error is back propagated through the layers of a deep network, they tend toward 0 .

Long short-term memory network (LSTM)

- Designed to account for the vanishing gradient problem
- Basic idea: split the s vector propagated between time steps into a memory component and a hidden state component

LSTMs

Gates

- LSTMs gates control the flow of information

- A sigmoid squashes its input to between 0 and 1
- By multiplying the output of a sigmoid element-wise with another vector, we forget information in the vector (if multiplied by 0) or allow it to pass (if multiplied by 1)
input

3.7	1.4	-0.7	-1.4

7.8
gate

output

0.03	1.4	-0.35	-1.38	0.08

Forget gate: as a function of the previous hidden state and current input, forget information in the memory

Input gate (but forget some information about the current observation)

Update the memory (but forget some information about the current observation)

The memory passes directly to the next state

Output gate: forget some information to send to the hidden state

The hidden state is updated with the current observation and new context.

How much context?

- For language modeling, LSTMs are aware of about 200 words of context
- Ignores word order beyond 50 words

GRU

- A gated recurrent unit adopts the same gating mechanism as an LSTM, but reduces the number of parameters to learn.

- Only one context vector (not a separate memory and hidden state vector) gets passed between timesteps.
- 2 gates (reset and update) instead of 3.

LSTM/RNN

- Is an RNN the same kind of sequence labeling model as an HMM or MEMM?
- It doesn't use nearby labels in making predictions! (More like logistic regression in this respect)

Sequence labeling models

model form label dependency rich features?

Hidden Markov
Models
$\prod_{i=1}^{N} P\left(x_{i} \mid y_{i}\right) P\left(y_{i} \mid y_{i-1}\right)$
Markov assumption
no

MEMM

$$
\prod_{i=1}^{N} P\left(y_{i} \mid y_{i-1}, x, \beta\right)
$$

Markov assumption
yes

RNN

$$
\prod_{i=1}^{N} P\left(y_{i} \mid x_{1: i}, \beta\right)
$$

none
distributed

BERT

- Transformer-based model (Vaswani et al. 2017) to predict masked word using bidirectional context + next sentence prediction.
- Generates multiple layers of representations for each token sensitive to its context of use.

-0.7	-1.3	0.4	-0.4	-0.7	1.2	-1.1	1.1	0.6	0.3	-0.1	-0.7	-0.1	0.9	-1.1
$e_{2,1}$					$e_{2,2}$					$\mathrm{e}_{2,3}$				
-0.2	1	0.1	-0.8	-1.	0.3	0.3	-1.7	0.7	-1.	1.6	-0.3	-0.9	-0.7	0.2
$e_{1,1}$					$e_{1,2}$					$e_{1,3}$				
The					dog					barked				

-0.2	0.3	2.1	1.2	0.6
	$e_{3,1}$			

At the end of this process, we have one representation for each layer for each token

-0.2	0.3	2.1	1.2	0.6
$\mathrm{e}_{3,1}$				

-1.8	-0.2	-2.4	-0.2	-0.1
$\mathrm{e}_{3,2}$				

-0.9	-1.5	-0.7	0.9	0.2
$\mathrm{e}_{3,3}$				

-0.7	-1.3	0.4	-0.4	-0.7
$\mathrm{e}_{2,1}$				

1.2	-1.1	1.1	0.6	0.3
				$\mathrm{e}_{2,2}$

-0.1	-0.7	-0.1	0.9	-1.1
$\mathrm{e}_{2,3}$				

-0.2	1	0.1	-0.8	-1.1
		$\mathrm{e}_{1,1}$		

The

0.3	0.3	-1.7	0.7	-1.1
	$\mathrm{e}_{1,2}$			

1.6	-0.3	-0.9	-0.7	0.2
$\mathrm{e}_{1,3}$				
barked				

BERT

- BERT can be used not only as a language model to generate contextualized word representations, but also as a predictive model whose parameters are fine-tuned to a task.

X	DT	NN	VBD	X	X
softmax				\uparrow softmax	softmax
\uparrow	\uparrow		\uparrow	\uparrow	\uparrow
$b_{12,0} W^{O}$	$b_{12,1} W^{O}$	$b_{12,2} W^{O}$	$b_{12,3} W^{O}$	$b_{12,4} W^{O}$	$b_{12,5} W^{O}$
0.30 .20 .70	-1.6-0.6-0.3 -0.4		-0.1 0.2 0.4-0.6	$1.1-1.50 .30 .4$	-0.4-1.1-0.0.-0.3
$\mathrm{e}_{3,1}$	$\mathrm{e}_{3,2}$	$\mathrm{e}_{3,3}$	$\mathrm{e}_{3,4}$	$\mathrm{e}_{3,5}$	$\mathrm{e}_{3,6}$
	\cdots		x	-	
-1.7-0.6-0.5-1.6	0.60 .220 .9	$0.51 .9-1.2-0.2$	-0.6-0.7-1.4-2.1		$1.90 .6-0.4-0.3$
$\mathrm{e}_{2,1}$	$\mathrm{e}_{2,2}$	$\mathrm{e}_{2,3}$	$\mathrm{e}_{2,4}$	$\mathrm{e}_{2,5}$	$\mathrm{e}_{2,6}$
$\begin{array}{llllll}-0.5 & -0.5 & 0.6 & 0.7\end{array}$	$0.10 .7-0.50 .8$	2.5-1.7-0.9-2.8	-0.5-1.1-0.6 1.4	0.6-1.7 1.62 .1	$1.1-0.90 .50 .1$
$\mathrm{e}_{1,1}$	$\mathrm{e}_{1,2}$	$\mathrm{e}_{1,3}$	$\mathrm{e}_{1,4}$	$\mathrm{e}_{1,5}$	$\mathrm{e}_{1,6}$
[CLS]	The	dog	bark	\#ed	[SEP]

BERT

- Pre-training: train BERT through masked language modeling and nextsentence prediction to learn the parameters of BERT layers. Trained on Wikipedia + BookCorpus.
- Task fine-tuning: add additional linear transformation + softmax to get distribution over output space. Trained on annotated data.

Logistics

- Exam1 grading is being finalized.
- No homework this week
- Homework 4 will be released by Friday.
- AP1 is due this Sunday March 3
- Quiz 4 will be out this Friday afternoon (due Monday).
- Next Week: Parsing

