# Natural Language Processing 

Info 159/259<br>Lecture 10: LLM Wrap up, Sequence labeling (for POS)

Many slides \& instruction ideas borrowed from:
David Bamman, Mohit lyyer, Greg Durrett \& Diyi Yang

## Logistics

- Exam1 is being graded and reviewed.
- No homework this week
- Homework 4 will be released towards end of the week.
- AP1 is due this Sunday March 3
- Quiz 4 will be out this Friday afternoon (Due Monday).
- Today: Wrapping up LLMs, Sequence Tagging


## Evolution of Paradigm

Before 2014

2014-2019

2019-2021

2021-...

Fully Supervised (feature Engineering)

Architecture Engineering

Pretrain+Finetune: Objective Engineering

Pretrain, prompt, predict: Prompt Engineering

## Pretrain + Fine-tune

- The LLM backbone gets trained with its objectives
- The backbone gets fine-tuned for specific task in supervised manner



## Everything is language modeling

The director of 2001: A Space Odyssey is $\qquad$

The French translation of "cheese" is $\qquad$

The sentiment of "I really hate this movie" is

## In Context Learning

- Provide the pattern; LLM is expected to continue with it.
- Use the off-the-shelf model:
- No Gradient update and parameter change.


## Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

```
1 Translate English to French: \longleftarrow task description
2 cheese => \longleftarrow prompt
```


## One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
1 Translate English to French:
2 sea otter => loutre de mer
cheese =>
task description
prompt
```


## Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: \longleftarrow task description
sea otter => loutre de mer \longleftarrow examples
peppermint => menthe poivrée
plush girafe => girafe peluche
cheese => .............................. }\longleftarrow\mathrm{ prompt
```

Brown et al. (2020, "Language Models are Few-Shot Learners" https://arxiv.org/pdf/2005.14165.pdf

## Prompt engineering

- Manual prompt design: encoding domain knowledge into prompt templates that are likely to generate a response in the output space.


## Chain-of-thought Prompting

- Tasks that require multi-step reasoning.
- Computation: entirely on the LM.

```
4621012097 + 3367370272 = 7988382369
7263297356 + 3675827524 = 10939124880
4764893393 + 9123518451 = 13888411844
5692118231 + 1499193323 = 7191311554
8504625225 + 5470236074 = ?
```

- One/few shot learning: not enough
- Improves with breaking down the task.


## Chain-of-thought Prompting

- Tasks that require multi-step reasoning.
- One/few shot learning: not enough
- Improves with breaking down the task.


## Standard Prompting

## Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11 .
Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

## Model Output

## A: The answer is 27 .

## Chain-of-Thought Prompting

## Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5+6=11$. The answer is 11 .

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

## Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had $23-20=3$. They bought 6 more apples, so they have $3+6=9$. The answer is 9 .

## Chain-of-thought Prompting

|  | MultiArith | GSM8K |
| :--- | ---: | ---: |
| Zero-Shot | $\mathbf{1 7 . 7}$ | $\mathbf{1 0 . 4}$ |
| Few-Shot (2 samples) | 33.7 | 15.6 |
| Few-Shot (8 samples) | 33.8 | 15.6 |
| Zero-Shot-CoT | $\mathbf{7 8 . 7}$ | $\mathbf{4 0 . 7}$ |
| Few-Shot-CuT (2 samples) | 84.8 | 41.3 |
| Few-Shot-CoT (4 samples : First) (*1) | 89.2 | - |
| Few-Shot-CoT (4 samples : Second) (*1) | 90.5 | - |
| Few-Shot CoT (8 samples) | $\mathbf{9 3 . 0}$ | 48.7 |
| Zero-Plus-Few-Shot-CoT (8 samples) (*2) | $\mathbf{9 2 . 8}$ | $\mathbf{5 1 . 5}$ |
| Finetuned GPT-3 175B [Wei et al., 2UZ2] | - | 33 |
| Finetuned GPT-3 175B + verifier [Wei et al., 2022] | - | 55 |
| PaLM 540B: Zero-Shot | $\mathbf{2 5 . 5}$ | $\mathbf{1 2 . 5}$ |
| PaLM 540B: Zero-Shot-CoT | $\mathbf{6 6 . 1}$ | $\mathbf{4 3 . 0}$ |
| PaLM 540B: Zero-Shot-CoT + self consistency | $\mathbf{8 9 . 0}$ | $\mathbf{7 0 . 1}$ |
| PaLM 540B: Few-Shot [Wei et al., 2022] | - | 17.9 |
| PaLM 540B: Few-Shot-CoT [Wei et al., 2022] | - | 56.9 |
| PaLM 540B: Few-Shot-CoT + self consistency [Wang et al., 2022] | - | 74.4 |

## Explosion of LLMs



## Classic NLP

- Sequence Modeling: POS tagging, Named Entity Recognition
- Syntactic and Dependency Parsing
- Lexical Semantics
- Discourse: Coreference Resolution

everyone likes
a bottle of $\qquad$ is on the table
makes you drunk
a cocktail with $\qquad$ and seltzer


## Distribution

- Words that appear in similar contexts have similar representations (and similar meanings, by the distributional hypothesis).


## Parts of speech

- Parts of speech are categories of words defined distributionally by the morphological and syntactic contexts a word appears in.


## Morphological distribution

POS often defined by distributional properties; verbs = the class of words that each combine with the same set of affixes

|  | -s | -ed | -ing |
| :---: | :---: | :---: | :---: |
| walk | walks | walked | walking |
| slice | slices | sliced | slicing |
| believe | believes | believed | believing |
| of | *ofs | *ofed | *ofing |
| red | *reds | *redded | *reding |

## Morphological distribution

We can look to the function of the affix (denoting past tense) to include irregular inflections.

|  | $-s$ | -ed | -ing |
| :---: | :---: | :---: | :--- |
| walk | walks | walked | walking |
| sleep | sleeps | slept | sleeping |
| eat | eats | ate | eating |
| give | gives | gave | giving |

## Syntactic distribution

- Substitution test: if a word is replaced by another word, does the sentence remain grammatical?

| Kim saw the | elephant |
| :---: | :---: |
| dog | before we did |
| idea |  |
| *of |  |
| *goes |  |

## Syntactic distribution

- These can often be too strict; some contexts admit substitutability for some pairs but not others.

| Kim saw the | elephant before we did |  |
| :---: | :---: | :---: |
|  | *Sandy | both nouns but common <br> vs. proper |

Kim *arrived the
elephant
before we did

| Nouns | People, places, things, actions-made-nouns ("I like swimming"). Inflected for singular/plural |
| :---: | :---: |
| Verbs | Actions, processes. Inflected for tense, aspect, number, person |
| Adjectives | Properties, qualities. Usually modify nouns |
| Adverbs | Qualify the manner of verbs ("She ran downhill extremely quickly yesteray") |
| Determiner | Mark the beginning of a noun phrase ("a dog") |
| Pronouns | Refer to a noun phrase (he, she, it) |
| Prepositions | Indicate spatial/temporal relationships (on the table) |
| Conjunctions | Conjoin two phrases, clauses, sentences (and, or) |


|  | Nouns | fax, affluenza, subtweet, bitcoin, cronut, emoji, listicle, mocktail, selfie, skort |
| :---: | :---: | :---: |
|  | Verbs | text, chillax, manspreading, photobomb, unfollow, google |
|  | Adjectives | crunk, amazeballs, post-truth, woke |
| 1 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 | Adverbs | hella, wicked |
|  | Determiner | Oov? Guess Noun |
|  | Pronouns |  |
|  | Prepositions | English has a new preposition, because internet [Garber 2013; Pullum 2014] |
|  | Conjunctions |  |

## POS tagging

Labeling the tag that's correct for the context.


Fruit flies like a banana


Time flies like an arrow

## State of the art

- Baseline: Most frequent class = 92.34\%
- Token accuracy: 98\% (English news)
[Bohnet et al. 2018]
- Optimistic: includes punctuation, words with only one tag (deterministic tagging)
- Substantial drop across domains (e.g., train on news, test on literature)
- Whole sentence accuracy: 55\%


## Domain difference



Why is part of speech tagging useful?

## POS indicative of syntax



Fruit flies like a banana


Time flies like an arrow

## POS indicative of MWE



$$
\left((A \mid N)+\mid\left((A \mid N)^{\star}(N P)\right)(A \mid N)^{\star}\right) N
$$

$A N$ : linear function; lexical ambiguity; mobile phase
$N N$ : regression coefficients; word sense; surface area
$A A N$ : Gaussian random variable; lexical conceptual paradigm; aqueous mobile phase
$A N N$ : cumulative distribution function; lexical ambiguity resolution; accessible surface area
$N A N$ : mean squared error; domain independent set; silica based packing
$N N N$ : class probability function; text analysis system; gradient elution chromatography
$N P N$ : degrees of freedom; [no example]; energy of adsorption

## POS is indicative of pronunciation

| Noun | Verb |
| :---: | :---: |
| My conduct is great | I conduct myself well |
| She won the contest | I contest the ticket |
| He is my escort | He escorted me |
| That is an insult | Don't insult me |
| Rebel without a cause | He likes to rebel |
| He is a suspect | I suspect him |

## Tagsets

- Penn Treebank
- Universal Dependencies
- Twitter POS


## Verbs

| tag | description | example |
| :---: | :---: | :---: |
| VB | base form | I want to like |
| VBD | past tense | I/we/he/she/you liked |
| VBG | present participle | He was liking it |
| VBN | present (non 3rd-sing) | I had liked it |
| VBP | present (3rd-sing) | He like it |
| VBZ | modal verbs it | He can go |
| MD |  |  |

## Nouns

| tag | description | example |  |
| :---: | :---: | :---: | :---: |
| non-proper | NN | non-proper, singular <br> or mass | company |
| non-proper, plural | companies |  |  |
| NNS | proper, singular | Carolina |  |
| NNP | proper, plural | Carolinas |  |

## DT (Article)

- Articles (a, the, every, no)
- Indefinite determiners (another, any, some, each)
- That, these, this, those when preceding noun
- All, both when not preceding another determiner or possessive pronoun


## JJ (Adjectives)

- General adjectives
- happy person
- new mail
- Ordinal numbers

2002 other/jj
1925 new/jj
1563 last/jj
1174 many/jj
1142 such/jj
1058 first/jj
824 major/jj
715 federal/jj
698 next/jj
644 financial/jj

- fourth person


## RB (Adverb)

- Most words that end in -ly
- Degree words (quite, too, very)
- Negative markers: not, n't, never
4410 n 't/rb
$2071 \mathrm{also} / \mathrm{rb}$
$1858 \mathrm{not} / \mathrm{rb}$
$1109 \mathrm{now} / \mathrm{rb}$
1070 only/rb
$1027 \mathrm{as} / \mathrm{rb}$
961 even/rb
$839 \mathrm{so} / \mathrm{rb}$
810 about/rb
804 still/rb


# IN (preposition, subordinating conjunction) 

- All prepositions (except to) and subordinating conjunctions
- He jumped on the table because he was excited

31111 of/in<br>22967 in/in<br>11425 for/in<br>7181 on/in<br>6684 that/in<br>6399 at/in<br>6229 by/in<br>5940 from/in<br>5874 with/in<br>5239 as/in

## POS tagging

Labeling the tag that's correct for the context.


Fruit flies like a banana


Time flies like an arrow

## Sequence labeling

$$
\begin{aligned}
x & =\left\{x_{1}, \ldots, x_{n}\right\} \\
y & =\left\{y_{1}, \ldots, y_{n}\right\}
\end{aligned}
$$

- For a set of inputs $x$ with $n$ sequential time steps, one corresponding label $y_{i}$ for each $x_{i}$


# Named entity recognition 

\section*{| B-PERS I-PERS | 0 |
| :--- | :--- |}

Natalie Johnson works for UCB

- person
- Iocation
- organization
- (misc)
- person
- location

7-class:

- organization
- time
- money
- percent
- date


## POS tagging training data

- Wall Street Journal (~1M tokens, 45 tags, English)
- Universal Dependencies (universal dependency treebanks for many languages; common POS tags for all) https://github.com/UniversalDependencies


## Majority class

- Pick the label each word is seen most often with in the training data

| fruit | flies | like | a | banana |
| :--- | :--- | :--- | :--- | :--- |
| NN 12 | VBZ 7 | VB 74 | FW 8 | NN 3 |
|  | NNS 1 | VBP 31 | SYM 13 |  |
|  | JJ 28 | LS 2 |  |  |
|  | IN 533 | JJ 2 |  |  |
|  |  | IN 1 |  |  |
|  |  | DT 25820 |  |  |
|  |  | NNP 2 |  |  |

## Sequences

- Models that make independent predictions for elements in a sequence can reason over expressive representations of the input $x$ (including correlations among inputs at different time steps $x_{i}$ and $x_{j}$.
- But they don't capture another important source of information: correlations in the labels $y$.


## Sequences



Time flies like an arrow

## Sequences

| DT | NN | 41909 |
| :---: | :---: | :---: |
| NNP | NNP | 37696 |
| NN | IN | 35458 |
| IN | DT | 35006 |
| JJ | NN | 29699 |
| DT | JJ | 19166 |
| NN | NN | 17484 |
| NN | NNP | 16352 |
| IN | NNS | 15940 |
| NN | IN | 15548 |
| NNS | VB | 15146 |
| TO | NNP | 13683 |
| IN |  | 11565 |

## Sequences

| $x$ | time | flies | like | an | arrow |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y | NN | VBZ | IN | DT | NN |

$$
P(y=\text { NN VBZ IN DT NN } \mid x=\text { time flies like an arrow })
$$

## Generative vs. Discriminative models

- Generative models specify a joint distribution over the labels and the data. With this you could generate new data

$$
P(x, y)=P(y) P(x \mid y)
$$

- Discriminative models specify the conditional distribution of the label y given the data x . These models focus on how to discriminate between the classes

$$
P(y \mid x)
$$

## Generative Model

$$
P(x, y)=P(x \mid y) P(y)
$$

| $x$ | time | flies | like | an | arrow |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y | NN | VBZ | IN | DT | NN |

$\max _{y} P(x \mid y) P(y)$

## Estimating the seq. Prob.

$$
\begin{aligned}
P\left(y_{i}, \ldots, y_{n}\right) & =P\left(y_{1}\right) \\
& \times P\left(y_{2} \mid y_{1}\right) \\
& \times P\left(y_{3} \mid y_{1}, y_{2}\right) \\
& \cdots \\
& \times P\left(y_{n} \mid y_{1}, \ldots, y_{n-1}\right)
\end{aligned}
$$

- Remember: a Markov assumption is an approximation to this exact decomposition (the chain rule of probability)


## Hidden Markov Model

## $\max P(x \mid y) P(y)$

## Prior probability of label sequence

$$
P\left(y_{1}, \cdots, y_{n}\right) \approx \prod_{i=1}^{n} P\left(y_{i} \mid y_{i-1}\right)
$$

- We'll make a first-order Markov assumption and calculate the joint probability as the product the individual factors conditioned only on the previous tag.


## Hidden Markov Model

First-order HMM

$$
P\left(y_{1} \ldots, y_{n}\right) \approx \prod_{i=1}^{n} P\left(y_{i} \mid y_{i-1}\right)
$$

$$
P\left(y_{1}, \ldots, y_{n}\right) \approx \prod_{i=1}^{n} P\left(y_{i} \mid y_{i-2}, y_{i-1}\right)
$$

$$
P\left(y_{1} \ldots, y_{n}\right) \approx \prod_{i=1}^{n} P\left(y_{i} \mid y_{i-3}, y_{i-2}, y_{i-1}\right)
$$

## Hidden Markov Model

## $\max P(x \mid y) P(y)$ <br> $y$

$$
P(x \mid y)=P\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{n}\right)
$$

$$
P\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{n}\right) \approx \prod_{i=1}^{N} P\left(x_{i} \mid y_{i}\right)
$$

- Here again we'll make a strong assumption: the probability of the word we see at a given time step is only dependent on its own label, no matter the Markov order used for $\mathrm{P}(\mathrm{y})$.


## HMM

$$
P\left(x_{1}, \cdots, x_{n^{\prime}} y_{1} \ldots, y_{n}\right) \approx \prod_{i=1}^{n} P\left(y_{i} \mid y_{i-1}\right) \prod_{i=1}^{n} P\left(x_{i} \mid y_{i}\right)
$$

## HMM



## HMM

$$
P(V B \mid N N P)
$$



$$
P(\text { was } \mid V B)
$$

## Parameter estimation

$$
P\left(y_{t} \mid y_{t-1}\right) \quad \frac{c\left(y_{1}, y_{2}\right)}{c\left(y_{1}\right)}
$$

MLE for both is just counting and normalizing

$$
P\left(x_{t} \mid y_{t}\right)
$$

$$
\frac{c(x, y)}{c(y)}
$$

## Transition probabilities

|  | NNP | MD | VB | JJ | NN | RB | DT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\langle s>$ | 0.2767 | 0.0006 | 0.0031 | 0.0453 | 0.0449 | 0.0510 | 0.2026 |
| NNP | 0.3777 | 0.0110 | 0.0009 | 0.0084 | 0.0584 | 0.0090 | 0.0025 |
| MD | 0.0008 | 0.0002 | 0.7968 | 0.0005 | 0.0008 | 0.1698 | 0.0041 |
| VB | 0.0322 | 0.0005 | 0.0050 | 0.0837 | 0.0615 | 0.0514 | 0.2231 |
| JJ | 0.0366 | 0.0004 | 0.0001 | 0.0733 | 0.4509 | 0.0036 | 0.0036 |
| NN | 0.0096 | 0.0176 | 0.0014 | 0.0086 | 0.1216 | 0.0177 | 0.0068 |
| RB | 0.0068 | 0.0102 | 0.1011 | 0.1012 | 0.0120 | 0.0728 | 0.0479 |
| DT | 0.1147 | 0.0021 | 0.0002 | 0.2157 | 0.4744 | 0.0102 | 0.0017 |

Figure 10.5 The $A$ transition probabilities $P\left(t_{i} \mid t_{i-1}\right)$ computed from the WSJ corpus without smoothing. Rows are labeled with the conditioning event; thus $P(V B \mid M D)$ is 0.7968 .

## Emission probabilities

|  | Janet | will | back | the | bill |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NNP | 0.000032 | 0 | 0 | 0.000048 | 0 |
| MD | 0 | 0.308431 | 0 | 0 | 0 |
| VB | 0 | 0.000028 | 0.000672 | 0 | 0.000028 |
| JJ | 0 | 0 | 0.000340 | 0.000097 | 0 |
| NN | 0 | 0.000200 | 0.000223 | 0.000006 | 0.002337 |
| RB | 0 | 0 | 0.010446 | 0 | 0 |
| DT | 0 | 0 | 0 | 0.506099 | 0 |

Figure 10.6 Observation likelihoods $B$ computed from the WSJ corpus without smoothing.

## Decoding

- Decoding: Finding the optimal path for a sequence using transition and emission parameters.
- Greedy decoding: proceed left to right, committing to the best tag for each time step (given the sequence seen so far)

| Fruit | flies | like | a | banana |
| :---: | :---: | :---: | :---: | :---: |
| NN | VB | IN | DT | NN |

## Decoding



The horse raced past the barn fell

## Decoding



The horse raced past the barn fell


Information later on in the sentence can influence the best tags earlier on.

## All paths

| END |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DT |  |  |  |  |  |  |  |
| NNP |  |  |  |  |  |  |  |
| VB |  |  |  |  |  |  |  |
| NN |  |  |  |  |  |  |  |
| MD |  |  |  |  |  |  |  |
| START |  |  |  |  |  |  |  |
|  | $\wedge$ | Janet | will | back | the | bill | $\$$ |

Ideally, what we want is to calculate the joint probability of each path and pick the one with the highest probability. But for N time steps and K labels, number of possible paths $=K^{N}$

# 5 word sentence with 45 Penn Treebank tags 

$$
45^{5}=184,528,125 \text { different paths }
$$

$$
45^{20}=1.16 \mathrm{e} 33 \text { different paths }
$$

## Viterbi algorithm

- Basic idea: if an optimal path through a sequence uses label $L$ at time $T$, then it must have used an optimal path to get to label $L$ at time $T$
- We can discard all non-optimal paths up to label $L$ at time $T$

| END |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DT |  |  |  |  |  |  |  |
| NNP |  |  |  |  |  |  |  |
| VB |  |  |  |  |  |  |  |
| NN |  |  |  |  |  |  |  |
| MD |  |  |  |  |  |  |  |
| START |  |  |  |  |  |  |  |
|  | $\wedge$ | Janet | will | back | the | bill | $\$$ |

- At each time step $t$ ending in label K , we find the max probability of any path that led to that state

| END |  |
| :---: | :---: |
| DT | $v_{1}(\mathrm{DT})$ |
| NNP |  |
| VB |  |
| NN $(N N P)$ |  |
| MD |  |
| START |  |

Janet

What's the HMM probability of ending in Janet = NNP?

$$
\begin{gathered}
P\left(y_{t} \mid y_{t-1}\right) P\left(x_{t} \mid y_{t}\right) \\
P(\text { NNP } \mid \text { START }) P(\text { Janet } \mid \text { NNP })
\end{gathered}
$$

| END |  |  |
| :---: | :---: | :---: |
| DT |  | $v_{1}(\mathrm{DT})$ |
| NNP |  | $v_{1}(\mathrm{NNP})$ |
| VB |  | $v_{1}(\mathrm{VB})$ |
| NN |  | $v_{1}(\mathrm{NN})$ |
| MD | $v_{1}(\mathrm{MD})$ |  |
| START |  |  |

Best path through time step 1 ending in tag y (trivially - best path for all is just START)

$$
v_{1}(y)=\max _{u \in \mathcal{Y}}\left[P\left(y_{t}=y \mid y_{t-1}=u\right) P\left(x_{t} \mid y_{t}=y\right)\right]
$$

| END |  |  |
| :---: | :---: | :---: |
| DT | $v_{1}(\mathrm{DT})$ | $v_{2}(\mathrm{DT})$ |
| NNP |  | $v_{1}(\mathrm{NNP})$ |
| VB |  | $v_{2}(\mathrm{NNP})$ |
| NN |  | $v_{1}(\mathrm{VB})$ |
| MD | $v_{1}(\mathrm{NN})$ | $v_{2}(\mathrm{vB})$ |
| START |  | $v_{1}(\mathrm{ND})$ |
|  |  | $v_{2}(\mathrm{MD})$ |
|  |  |  |

What's the max HMM probability of ending in will $=$ MD?

First, what's the HMM probability of a single path ending in will = MD?

| END |  |  |
| :---: | :---: | :---: |
| DT | $v_{1}(\mathrm{DT})$ | $v_{2}(\mathrm{DT})$ |
| NNP |  | $v_{1}(\mathrm{NNP})$ |
| VB | $v_{2}(\mathrm{NNP})$ |  |
| NN |  | $v_{1}(\mathrm{VB})$ |
| MD | $v_{2}(\mathrm{VB})$ |  |
| START | $v_{2}(\mathrm{NN})$ |  |
|  |  | $v_{1}(\mathrm{MD})$ |
|  | $v_{2}(\mathrm{MD})$ |  |

Janet will

$$
P\left(y_{1} \mid S T A R T\right) P\left(x_{1} \mid y_{1}\right) \times P\left(y_{2}=\mathrm{MD} \mid y_{1}\right) P\left(x_{2} \mid y_{2}=\mathrm{MD}\right)
$$

| END |  |  |
| :---: | :---: | :---: |
| DT |  |  |
| NNP |  | $v_{1}(\mathrm{DT})$ |
| VB | $v_{2}(\mathrm{DT})$ |  |
| NN $)$ | $v_{2}(\mathrm{NNP})$ |  |
| MD |  | $v_{1}(\mathrm{VB})$ |
| START |  | $v_{2}(\mathrm{VB})$ |
|  | $v_{1}(\mathrm{NN})$ | $v_{2}(\mathrm{NN})$ |

## Best path through time step 2 ending in tag MD

```
P(DT | START ) }\timesP(\mathrm{ Janet | DT ) }\timesP(\mp@subsup{y}{t}{}=\textrm{MD}|P(\mp@subsup{y}{t-1}{}=\textrm{DT})\timesP(will | yt = MD )
P(NNP | START ) }\timesP(\mathrm{ Janet |NNP ) }\timesP(\mp@subsup{y}{t}{}=\textrm{MD}|P(\mp@subsup{y}{t-1}{}=\textrm{NNP})\timesP(will | y y = MD )
P(VB | START ) }\timesP(\mathrm{ Janet }|\textrm{VB})\timesP(\mp@subsup{y}{t}{}=\textrm{MD}|P(\mp@subsup{y}{t-1}{}=\textrm{VB})\timesP(\mathrm{ will | y yt = MD }
P(NN | START ) }\timesP(\mathrm{ Janet | NN ) }\timesP(\mp@subsup{y}{t}{}=\textrm{MD}|P(\mp@subsup{y}{t-1}{}=\textrm{NN})\timesP(will|\mp@subsup{y}{t}{}=\textrm{MD}
P(MD | START ) }\timesP(\mathrm{ Janet | MD ) }\timesP(\mp@subsup{y}{t}{}=\textrm{MD}|P(\mp@subsup{y}{t-1}{}=\textrm{MD})\timesP(\mathrm{ will | }\mp@subsup{y}{t}{}=\textrm{MD}
```

Let's say the best path ending $\mathrm{y}_{2}=\mathrm{MD}$ includes $y_{1}=$ NNP, with probability 0.0090 .

Under our first-order Markov assumption, if $\mathrm{y}_{2}=\mathrm{MD}$ is in the best path for the complete sequence, $y_{1}=$ NNP must be as well. That means we can forget every other path ending in $\mathrm{y}_{2}=\mathrm{MD}$ that does not have $y_{1}=N N P$.

| END |  |  |
| :---: | :---: | :---: |
| DT | $v_{1}(\mathrm{DT})$ | $v_{2}(\mathrm{DT})$ |
| NNP | $v_{1}(\mathrm{NNP})$ | $v_{2}(\mathrm{NNP})$ |
| VB | $v_{1}(\mathrm{VB})$ | $v_{2}(\mathrm{VB})$ |
| NN | $v_{1}(\mathrm{NN})$ | $v_{2}(\mathrm{NN})$ |
| MD | $v_{1}(\mathrm{MD})$ | $v_{2}(\mathrm{MD})$ |
| START |  |  |


|  | Janet |
| :---: | :---: |
| 0.0003 | $P($ DT $\mid$ START $) \times P($ Janet $\mid$ DT $) \times P\left(y_{t}=\mathrm{MD} \mid P\left(y_{t-1}=\mathrm{DT}\right) \times P\left(\right.\right.$ will $\left.\mid y_{t}=\mathrm{MD}\right)$ |
| 0.0090 | $P($ NNP $\mid$ START $) \times P($ Janet $\mid$ NNP $) \times P\left(y_{t}=\mathrm{MD} \mid P\left(y_{t-1}=\mathrm{NNP}\right) \times P\left(\right.\right.$ will $\left.\mid y_{t}=\mathrm{MD}\right)$ |
| 0.0001 | $P(\mathrm{VB} \mid \mathrm{START}) \times P($ Janet $\mid \mathrm{VB}) \times P\left(y_{t}=\mathrm{MD} \mid P\left(y_{t-1}=\mathrm{VB}\right) \times P\left(\right.\right.$ will $\left.\mid y_{t}=\mathrm{MD}\right)$ |
| 0.0045 | $\mathrm{N} \mid$ START $) \times P($ Janet $\mid$ NN $) \times P\left(y_{t}=\mathrm{MD} \mid P\left(y_{t-1}=\mathrm{NN}\right) \times P\left(\right.\right.$ will $\left.\mid y_{t}=\mathrm{MD}\right)$ |
| 0.0002 | $P(\mathrm{MD} \mid$ START $) \times P($ Janet $\mid \mathrm{MD}) \times P\left(y_{t}=\mathrm{MD} \mid P\left(y_{t-1}=\mathrm{MD}\right) \times P\left(\right.\right.$ will $\left.\mid y_{t}=\mathrm{MD}\right)$ |

None of the grey out paths could possibly be in the final optimal path, so we can forget them going forward.

To calculate this full probability, notice that we can reuse information we've already computed.

```
P(DT | START ) }\timesP(\mathrm{ Janet | DT ) }\timesP(\mp@subsup{y}{t}{}=MD|P(\mp@subsup{y}{t-1}{}=DT)\timesP(\mathrm{ will | y 
    v
P(NNP | START) }\timesP(\mathrm{ Janet | NNP )}\timesP(\mp@subsup{y}{t}{}=MD|P(\mp@subsup{y}{t-1}{}=NNP)\timesP(will | y yt =MD
    v
P(VB | START ) }\timesP(\mathrm{ Janet | VB ) }\timesP(\mp@subsup{y}{t}{}=MD|P(\mp@subsup{y}{t-1}{}=VB)\timesP(will | y yt=MD
    v
```

| END |  |  |
| :---: | :---: | :---: |
| DT | $v_{1}(\mathrm{DT})$ | $v_{2}(\mathrm{DT})$ |
| NNP |  | $v_{1}(\mathrm{NNP})$ |
| VB |  | $v_{2}(\mathrm{NNP})$ |
| NN |  | $v_{1}(\mathrm{VB})$ |
| MD | $v_{1}(\mathrm{NB})$ |  |
| START |  | $v_{2}(N N)$ |

Janet will

$$
v_{t}(y)=\max _{u \in \mathcal{Y}}\left[v_{t-1}(u) \times P\left(y_{t}=y \mid y_{t-1}=u\right) P\left(x_{t} \mid y_{t}=y\right)\right]
$$

Every y at time step t may have


Janet will a different u at time step t-1 that leads to its max.

Once we've determined that u for each $y$, we can forget all of the other values of $u$ for that each $y$, since we know they cannot be on the optimal path for the entire sequence.

$$
v_{t}(y)=\max _{u \in \mathcal{Y}}\left[v_{t-1}(u) \times P\left(y_{t}=y \mid y_{t-1}=u\right) P\left(x_{t} \mid y_{t}=y\right)\right]
$$

| END |  |  |  |
| :---: | :---: | :---: | :---: |
| DT | $v_{1}(\mathrm{DT})$ | $v_{2}(\mathrm{DT})$ | $v_{3}(\mathrm{DT})$ |
| NNP |  | $v_{1}(\mathrm{NNP})$ | $v_{2}(\mathrm{NNP})$ |
| VB | $v_{3}(\mathrm{NNP})$ |  |  |
| NN |  | $v_{1}(\mathrm{VB})$ | $v_{2}(\mathrm{VB})$ |
| MD | $v_{3}(\mathrm{VB})$ |  |  |
| START | $v_{1}(\mathrm{MD})$ | $v_{2}(\mathrm{NN})$ | $v_{2}(\mathrm{mD})$ |
|  |  |  | $v_{3}(\mathrm{MD})$ |
|  | Janet | will | back |

25 paths ending in back $=\mathrm{VB}$

$$
\begin{aligned}
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=D T\right) P\left(x_{2}=\text { will } \mid y_{2}=D T\right) P\left(y_{2}=D T \mid y_{1}=D T\right) P\left(x_{1}=\text { Janet } \mid y_{1}=D T\right) P\left(y_{1}=D T \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=D T\right) P\left(x_{2}=\text { will } \mid y_{2}=D T\right) P\left(y_{2}=D T \mid y_{1}=N N P\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N P\right) P\left(y_{1}=N N P \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=D T\right) P\left(x_{2}=\text { will } \mid y_{2}=D T\right) P\left(y_{2}=D T \mid y_{1}=V B\right) P\left(x_{1}=\text { Janet } \mid y_{1}=V B\right) P\left(y_{1}=V B \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=D T\right) P\left(x_{2}=\text { will } \mid y_{2}=D T\right) P\left(y_{2}=D T \mid y_{1}=N N\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N\right) P\left(y_{1}=N N \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=D T\right) P\left(x_{2}=\text { will } \mid y_{2}=D T\right) P\left(y_{2}=D T \mid y_{1}=M D\right) P\left(x_{1}=\text { Janet } \mid y_{1}=M D\right) P\left(y_{1}=M D \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N P\right) P\left(x_{2}=\text { will } \mid y_{2}=N N P\right) P\left(y_{2}=N N P \mid y_{1}=D T\right) P\left(x_{1}=\text { Janet } \mid y_{1}=D T\right) P\left(y_{1}=D T \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N P\right) P\left(x_{2}=\text { will } \mid y_{2}=N N P\right) P\left(y_{2}=N N P \mid y_{1}=N N P\right) P\left(x_{1}=J a n e t \mid y_{1}=N N P\right) P\left(y_{1}=N N P \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N P\right) P\left(x_{2}=\text { will } \mid y_{2}=N N P\right) P\left(y_{2}=N N P \mid y_{1}=V B\right) P\left(x_{1}=\text { Janet } \mid y_{1}=V B\right) P\left(y_{1}=V B \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N P\right) P\left(x_{2}=\text { will } \mid y_{2}=N N P\right) P\left(y_{2}=N N P \mid y_{1}=N N\right) P\left(x_{1}=\operatorname{Janet} \mid y_{1}=N N\right) P\left(y_{1}=N N \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N P\right) P\left(x_{2}=\text { will } \mid y_{2}=N N P\right) P\left(y_{2}=N N P \mid y_{1}=M D\right) P\left(x_{1}=\text { Janet } \mid y_{1}=M D\right) P\left(y_{1}=M D \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=V B\right) P\left(x_{2}=\text { will } \mid y_{2}=V B\right) P\left(y_{2}=V B \mid y_{1}=D T\right) P\left(x_{1}=\text { Janet } \mid y_{1}=D T\right) P\left(y_{1}=D T \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=V B\right) P\left(x_{2}=\text { will } \mid y_{2}=V B\right) P\left(y_{2}=V B \mid y_{1}=N N P\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N P\right) P\left(y_{1}=N N P \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=V B\right) P\left(x_{2}=\text { will } \mid y_{2}=V B\right) P\left(y_{2}=V B \mid y_{1}=V B\right) P\left(x_{1}=\text { Janet } \mid y_{1}=V B\right) P\left(y_{1}=V B \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=V B\right) P\left(x_{2}=\text { will } \mid y_{2}=V B\right) P\left(y_{2}=V B \mid y_{1}=N N\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N\right) P\left(y_{1}=N N \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=V B\right) P\left(x_{2}=\text { will } \mid y_{2}=V B\right) P\left(y_{2}=V B \mid y_{1}=M D\right) P\left(x_{1}=\text { Janet } \mid y_{1}=M D\right) P\left(y_{1}=M D \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N\right) P\left(x_{2}=\text { will } \mid y_{2}=N N\right) P\left(y_{2}=N N \mid y_{1}=D T\right) P\left(x_{1}=\text { Janet } \mid y_{1}=D T\right) P\left(y_{1}=D T \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N\right) P\left(x_{2}=\text { will } \mid y_{2}=N N\right) P\left(y_{2}=N N \mid y_{1}=N N P\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N P\right) P\left(y_{1}=N N P \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N\right) P\left(x_{2}=\text { will } \mid y_{2}=N N\right) P\left(y_{2}=N N \mid y_{1}=V B\right) P\left(x_{1}=\text { Janet } \mid y_{1}=V B\right) P\left(y_{1}=V B \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N\right) P\left(x_{2}=\text { will } \mid y_{2}=N N\right) P\left(y_{2}=N N \mid y_{1}=N N\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N\right) P\left(y_{1}=N N \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=N N\right) P\left(x_{2}=\text { will } \mid y_{2}=N N\right) P\left(y_{2}=N N \mid y_{1}=M D\right) P\left(x_{1}=\text { Janet } \mid y_{1}=M D\right) P\left(y_{1}=M D \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=M D\right) P\left(x_{2}=\text { will } \mid y_{2}=M D\right) P\left(y_{2}=M D \mid y_{1}=D T\right) P\left(x_{1}=\text { Janet } \mid y_{1}=D T\right) P\left(y_{1}=D T \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=M D\right) P\left(x_{2}=\text { will } \mid y_{2}=M D\right) P\left(y_{2}=M D \mid y_{1}=N N P\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N P\right) P\left(y_{1}=N N P \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=M D\right) P\left(x_{2}=\text { will } \mid y_{2}=M D\right) P\left(y_{2}=M D \mid y_{1}=V B\right) P\left(x_{1}=\text { Janet } \mid y_{1}=V B\right) P\left(y_{1}=V B \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=M D\right) P\left(x_{2}=\text { will } \mid y_{2}=M D\right) P\left(y_{2}=M D \mid y_{1}=N N\right) P\left(x_{1}=\text { Janet } \mid y_{1}=N N\right) P\left(y_{1}=N N \mid S T A R T\right) \\
& P\left(x_{3}=\text { back } \mid y_{3}=V B\right) P\left(y_{3}=V B \mid y_{2}=M D\right) P\left(x_{2}=\text { will } \mid y_{2}=M D\right) P\left(y_{2}=M D \mid y_{1}=M D\right) P\left(x_{1}=\text { Janet } \mid y_{1}=M D\right) P\left(y_{1}=M D \mid S T A R T\right)
\end{aligned}
$$







In calculating the best path ending in $x_{3}=$ back and $y_{3}=V B$, we can forget every other path that we've already determined to be suboptimal.

| END |  |
| :---: | :---: |
| DT | $\mathrm{v}_{1}(\mathrm{DT}) \longleftarrow \mathrm{v}_{2}(\mathrm{DT})$ |
| NNP | $v_{1}(N N P) \searrow_{v_{2}(N N P)}$ |
| VB | $v_{1}(V B)$ |
| NN | $\mathrm{v}_{1}(\mathrm{NN}) \not \mathrm{v}_{2}(\mathrm{NN})$ |
| MD | $\mathrm{v}_{1}(\mathrm{MD}) \quad \mathrm{v}_{2}(\mathrm{MD})$ |
| START |  |







In calculating the best path ending in $x_{3}=$ back and $y_{3}=V B$, we can forget every other path that we've already determined to be suboptimal.

| END |  |
| :---: | :---: |
| DT | $\mathrm{v}_{1}(\mathrm{DT}) \longleftarrow \mathrm{v}_{2}(\mathrm{DT})$ |
| NNP | $v_{1}(N N P) \searrow_{v_{2}(N N P)}$ |
| VB | $v_{1}(V B)$ |
| NN | $\mathrm{v}_{1}(\mathrm{NN}) \not \mathrm{v}_{2}(\mathrm{NN})$ |
| MD | $\mathrm{v}_{1}(\mathrm{MD}) \quad \mathrm{v}_{2}(\mathrm{MD})$ |
| START |  |


| END |  |  |  |
| :---: | :---: | :---: | :---: |
| DT | $v_{1}(\mathrm{DT})$ | $v_{2}(\mathrm{DT})$ | $v_{3}(\mathrm{DT})$ |
| NNP |  | $v_{1}(\mathrm{NNP})$ | $v_{2}(\mathrm{NNP})$ |
| VB | $v_{3}(\mathrm{NNP})$ |  |  |
| NN |  | $v_{1}(\mathrm{VB})$ | $v_{2}(\mathrm{VB})$ |
| MD | $v_{3}(\mathrm{VB})$ |  |  |
| START | $v_{1}(\mathrm{NN})$ | $v_{3}(\mathrm{NN})$ |  |
|  |  | $v_{2}(\mathrm{MD})$ | $v_{3}(\mathrm{MD})$ |
|  | Janet | will | back |

So for every label at every time step, we only need to keep track of which label at the previous time step $t$ - 1 led to the highest joint probability at that time step $t$.

| END |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DT | $\mathrm{v}_{1}(\mathrm{DT})$ | $\mathrm{v}_{2}(\mathrm{DT}$ ) | v3(DT) | $\mathrm{v}_{4}$ (DT) | v5(DT) |
| NNP | $\mathrm{v}_{1}(\mathrm{NNP})$ | $\mathrm{v}_{2}$ (NNP) | $\mathrm{v}_{3}(\mathrm{NNP}$ ) | $\mathrm{v}_{4}(\mathrm{NNP}$ ) | $\mathrm{v}_{5}(\mathrm{NNP}$ ) |
| VB | $\mathrm{v}_{1}(\mathrm{VB})$ | $\mathrm{v}_{2}(\mathrm{VB})$ | $\mathrm{V}_{3}(\mathrm{VB})$ | $\mathrm{v}_{4}(\mathrm{MD})$ | $\mathrm{v}_{5}(\mathrm{MD})$ |
| NN | $\mathrm{v}_{1}(\mathrm{NN})$ | $\mathrm{v}_{2}(\mathrm{NN})$ | $\mathrm{v}_{3}(\mathrm{NN})$ | $\mathrm{V}_{4}(\mathrm{NN})$ | v5(NN) |
| MD | $\mathrm{v}_{1}(\mathrm{MD})$ | $\mathrm{v}_{2}(\mathrm{MD})$ | V3(MD) | $\mathrm{v}_{4}(\mathrm{MD})$ | $\mathrm{v}_{5}(\mathrm{MD})$ |
| START |  |  |  |  |  |


| END |  |  |  |  |  | $\mathrm{V}_{\mathrm{T}}(\mathrm{END})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DT | $\mathrm{v}_{1}$ (DT) | $\mathrm{v}_{2}(\mathrm{DT})$ | $\mathrm{v}_{3}$ (DT) | $\mathrm{v}_{4}$ (DT) | $\mathrm{v}_{5}(\mathrm{DT})$ |  |
| NNP | $\mathrm{v}_{1}(\mathrm{NNP}$ ) | $\mathrm{v}_{2}(\mathrm{NNP}$ ) | $\mathrm{v}_{3}(\mathrm{NNP}$ ) | $\mathrm{v}_{4}$ (NNP) | $\mathrm{V}_{5}$ (NNP) |  |
| VB | $\mathrm{v}_{1}(\mathrm{VB})$ | $\mathrm{v}_{2}(\mathrm{VB})$ | $\mathrm{v}_{3}(\mathrm{VB})$ | $\mathrm{V}_{4}(\mathrm{MD})$ | vs(MD) |  |
| NN | $\mathrm{v}_{1}(\mathrm{NN})$ | $\mathrm{v}_{2}(\mathrm{NN})$ | $\mathrm{v}_{3}(\mathrm{NN})$ | $\mathrm{V}_{4}(\mathrm{NN})$ | $\mathrm{v}_{5}(\mathrm{NN}$ ) |  |
| MD | $\mathrm{v}_{1}(\mathrm{MD})$ | $\mathrm{v}_{2}(\mathrm{MD})$ | $\mathrm{V}_{3}(\mathrm{MD})$ | $\mathrm{v}_{4}(\mathrm{MD})$ | $\mathrm{v}_{5}(\mathrm{MD})$ |  |
| START |  |  |  |  |  |  |
|  | Janet | will | back | the | bill |  |

$\mathrm{v}_{\mathrm{T}}(\mathrm{END})$ encodes the best path through the entire sequence


For each timestep $t+$ label, keep track of the max element from t-1 to reconstruct best path

## function VITERBI(observations of len T,state-graph of len $N$ ) returns best-path

create a path probability matrix viterbi $[N+2, T]$
for each state $s$ from 1 to $N$ do ;initialization step
viterbi $[s, 1] \leftarrow a_{0, s} * b_{s}\left(o_{1}\right)$
backpointer $[\mathrm{s}, 1] \leftarrow 0$
for each time step $t$ from 2 to $T$ do ; recursion step for each state $s$ from 1 to $N$ do
viterbi $[\mathrm{s}, \mathrm{t}] \leftarrow \max _{s^{\prime}=1}^{N}$ viterbi $\left[s^{\prime}, t-1\right] * a_{s^{\prime}, s} * b_{s}\left(o_{t}\right)$
backpointer $[\mathrm{s}, \mathrm{t}] \leftarrow \underset{s^{\prime}=1}{\operatorname{argax}}$ viterbi $\left[s^{\prime}, t-1\right] * a_{s^{\prime}, s}$
$s^{\prime}=1$
viterbi $\left[q_{F}, \mathrm{~T}\right] \leftarrow \max _{s=1}^{N}$ viterbi $[s, T] * a_{s, q_{F}} \quad$; termination step
backpointer $\left[q_{F}, \mathrm{~T}\right] \leftarrow \stackrel{N}{\operatorname{argmax}}$ viterbi $[s, T] * a_{s, q_{F}} \quad$; termination step
return the backtrace path by following backpointers to states back in time from backpointer $\left[q_{F}, T\right]$

Figure 10.8 Viterbi algorithm for finding optimal sequence of tags. Given an observation sequence and an $\mathrm{HMM} \lambda=(A, B)$, the algorithm returns the state path through the HMM that assigns maximum likelihood to the observation sequence. Note that states 0 and $q_{F}$ are non-emitting.

## Logistics

- Exam1 is being graded and reviewed.
- No homework this week
- Homework 4 will be released towards end of the week.
- AP1 is due this Sunday March 3.
- Quiz 4 will be out this Friday afternoon (Due Monday night).
- Next time: Neural Sequence Models

