Natural Language Processing

Info 159/259 Lecture 10: LLM Wrap up, Sequence labeling (for POS)

Many slides & instruction ideas borrowed from: David Bamman, Mohit Iyyer, Greg Durrett & Diyi Yang

Logistics

- Exam1 is being graded and reviewed.
- No homework this week
 - Homework 4 will be released towards end of the week.
- AP1 is due this Sunday March 3
- Quiz 4 will be out this Friday afternoon (Due Monday).
- Today: Wrapping up LLMs, Sequence Tagging

Evolution of Paradigm

Before 2014

Fully Supervised (feature Engineering)

2014-2019

Architecture Engineering

2019-2021

Pretrain+Finetune: Objective Engineering

2021-...

Pretrain, prompt, predict: Prompt Engineering

Pretrain + Fine-tune

- The LLM backbone gets trained with its objectives
- The backbone gets fine-tuned for specific task in supervised manner

		d	log ↑	Pre	etraining	neutrai sentiment				Fine-tu	ıning
0.3 0.2 0.7 0 e3,1	-1.6 -0.6 -0.3 -0.4 e3,2	-1 -0.6 2.3 0.9 e3,3	-0.1 0.2 0.4 -0.6 @3,4	1.1 -1.5 0.3 0.4 e3,5	-0.4 -1.1 -0.6 -0.3 e3,6	0.3 0.2 0.7 0 e _{3,1}	-1.6 -0.6 -0.3 -0.4 03,2	-1 -0.6 2.3 0.9 @3,3	-0.1 0.2 0.4 -0.6 C3,4	1.1 -1.5 0.3 0.4 e3,5	-0.4 -1.1 -0.6 -0.3 @3,6
-1.7 -0.6 -0.5 -1.6 e2,1	0.6 0.2 2 0.9 e2,2	0.5 1.9 -1.2 -0.2 e2,3	-0.6 -0.7 -1.4 -2.1 02,4	-1.1 0 -1.6 -0.7 e2,5	1.9 0.6 -0.4 -0.3 e2,6	-1.7 -0.6 -0.5 -1.6 e _{2,1}	0.6 0.2 2 0.9 e2,2	0.5 1.9 -1.2 -0.2 @2,3	-0.6 -0.7 -1.4 -2.1 02,4	-1.1 0 -1.6 -0.7 @2,5	1.9 0.6 -0.4 -0.3 e2,6
-0.5 -0.5 0.6 0.7 e1,1	0.1 0.7 -0.5 0.8 0.1 0.7 -0.5 0.8	2.5 -1.7 -0.9 -2.8 01,3	-0.5 -1.1 -0.6 1.4 0.4	0.6 -1.7 1.6 2.1 01,5	1.1 -0.9 0.5 0.1 01,6	-05 -05 0.6 0.7	0.1 0.7 -0.5 0.8	2.5 -1.7 -0.9 -2.8	-0.5 -1.1 -0.6 1.4	0.6 -1.7 1.6 2.1	1.1 -0.9 0.5 0.1
[CLS]	The	[MASKED]	bark	#ed	[SEP]	e _{1,1}	e _{1,2}	e _{1,3}	e _{1,4}	e _{1,5}	e _{1,6}

Everything is language modeling

The director of 2001: A Space Odyssey is _____

The French translation of "cheese" is _____

The sentiment of "I really hate this movie" is _____

In Context Learning

- Provide the pattern; LLM is expected to continue with it.
- Use the off-the-shelf model:
 - No Gradient update and parameter change.

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Brown et al. (2020, "Language Models are Few-Shot Learners" https://arxiv.org/pdf/2005.14165.pdf

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Brown et al. (2020, "Language Models are Few-Shot Learners" https://arxiv.org/pdf/2005.14165.pdf

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Brown et al. (2020, "Language Models are Few-Shot Learners" https://arxiv.org/pdf/2005.14165.pdf

Prompt engineering

• Manual prompt design: encoding domain knowledge into prompt templates that are likely to generate a response in the output space.

Chain-of-thought Prompting

- Tasks that require multi-step reasoning.
 - Computation: entirely on the LM.
- One/few shot learning: not enough
- Improves with breaking down the task.

4621012097 + 3367370272 = 7988382369 7263297356 + 3675827524 = 10939124880 4764893393 + 9123518451 = 13888411844 5692118231 + 1499193323 = 7191311554 8504625225 + 5470236074 = ?

Chain-of-thought Prompting

- Tasks that require multi-step reasoning.
- One/few shot learning: not enough
- Improves with breaking down the task.

Standard Prompting Model Input	Chain-of-Thought Prompting Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?	Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: The answer is 11.	A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5 + 6 = 11$. The answer is 11.
d: The calefelra had 25 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?	Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?
Model Output	Model Output
A: The answer is 27. 🗙	A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had $23 - 20 = 3$. They bought 6 more apples, so they have $3 + 6 = 9$. The answer is 9.

Wei et al, 2022

Chain-of-thought Prompting

	MultiArith	GSM8K
Zero-Shot	17.7	10.4
Few-Shot (2 samples)	33.7	15.6
Few-Shot (8 samples)	33.8	15.6
Zero-Shot-CoT	78.7	40.7
Few-Shot-CoT (2 samples)	84.8	41.3
Few-Shot-CoT (4 samples : First) (*1)	89.2	-
Few-Shot-CoT (4 samples : Second) (*1)	90.5	-
Few-Shot CoT (8 samples)	93.0	48.7
Zero-Plus-Few-Shot-CoT (8 samples) (*2)	92.8	51.5
Finetuned GPT-3 175B Wei et al., 2022	_	33
Finetuned GPT-3 175B + verifier [Wei et al., 2022]	-	55
PaLM 540B: Zero-Shot	25.5	12.5
PaLM 540B: Zero-Shot-CoT	66.1	43.0
PaLM 540B: Zero-Shot-CoT + self consistency	89.0	70.1
PaLM 540B: Few-Shot [Wei et al., 2022]	-	17.9
PaLM 540B: Few-Shot-CoT [Wei et al., 2022]	-	56.9
PaLM 540B: Few-Shot-CoT + self consistency [Wang et al., 2022]	-	74.4

Explosion of LLMs

Classic NLP

- Sequence Modeling: POS tagging, Named Entity Recognition
- Syntactic and Dependency Parsing
- Lexical Semantics
- Discourse: Coreference Resolution

Distribution

• Words that appear in similar contexts have similar representations (and similar meanings, by the distributional hypothesis).

Parts of speech

 Parts of speech are categories of words defined distributionally by the morphological and syntactic contexts a word appears in.

Morphological distribution

POS often defined by distributional properties; verbs = the class of words that each combine with the same set of affixes

	-S	-ed	-ing
walk	walks	walked	walking
slice	slices	sliced	slicing
believe	believes	believed	believing
of	*ofs	*ofed	*ofing
red	*reds	*redded	*reding

Morphological distribution

We can look to the function of the affix (denoting past tense) to include irregular inflections.

	-S	-ed	-ing
walk	walks	walked	walking
sleep	sleeps	slept	sleeping
eat	eats	ate	eating
give	gives	gave	giving

Syntactic distribution

• Substitution test: if a word is replaced by another word, does the sentence remain grammatical?

Kim saw the	elephant	before we did
	dog	
	idea	
	*of	
	*goes	

Syntactic distribution

• These can often be too strict; some contexts admit substitutability for some pairs but not others.

Nouns	People, places, things, actions-made-nouns ("I like swimming"). Inflected for singular/plural
Verbs	Actions, processes. Inflected for tense, aspect, number, person
Adjectives	Properties, qualities. Usually modify nouns
Adverbs	Qualify the manner of verbs ("She ran downhill extremely quickly yesteray")
Determiner	Mark the beginning of a noun phrase ("a dog")
Pronouns	Refer to a noun phrase (he, she, it)
Prepositions	Indicate spatial/temporal relationships (on the table)
Conjunctions	Conjoin two phrases, clauses, sentences (and, or)

	Nouns	fax, affluenza, subtweet, bitcoin, cronut, emoji, listicle, mocktail, selfie, skort			
	Verbs	text, chillax, manspreading, photobomb, unfollow, google			
	Adjectives	crunk, amazeballs, post-truth, woke			
	Adverbs	hella, wicked			
	Determiner	OOV? Guess Noun			
	Pronouns				
	Prepositions	English has a new preposition, because internet [Garber 2013; Pullum 2014]			
	Conjunctions				

Open class

Closed class

POS tagging

(Just tags in evidence within the Penn Treebank - more are possible!)

State of the art

- Baseline: Most frequent class = 92.34%
- Token accuracy: 98% (English news) [Bohnet et al. 2018]
 - Optimistic: includes punctuation, words with only one tag (deterministic tagging)
 - Substantial drop across domains (e.g., train on news, test on literature)
- Whole sentence accuracy: 55%

Domain difference

Why is part of speech tagging useful?

POS indicative of syntax

POS indicative of MWE

at least one adjective/noun or noun phrase

and definitely one noun

$((A \mid N) + \mid ((A \mid N)^*(NP))(A \mid N)^*)N$

- AN: linear function; lexical ambiguity; mobile phase
- NN: regression coefficients; word sense; surface area
- AAN: Gaussian random variable; lexical conceptual paradigm; aqueous mobile phase
- ANN: cumulative distribution function; lexical ambiguity resolution; accessible surface area
- NAN: mean squared error; domain independent set; silica based packing
- NNN: class probability function; text analysis system; gradient elution chromatography
- NPN: degrees of freedom; [no example]; energy of adsorption

POS is indicative of pronunciation

Noun	Verb
My conduct is great	I conduct myself well
She won the contest	I contest the ticket
He is my escort	He escorted me
That is an insult	Don't insult me
Rebel without a cause	He likes to rebel
He is a suspect	I suspect him

- Penn Treebank
- Universal Dependencies
- Twitter POS

Verbs

tag	description	example
VB	base form	I want to like
VBD	past tense	l/we/he/she/you liked
VBG	present participle	He was liking it
VBN	past participle	I had liked it
VBP	present (non 3rd-sing)	l like it
VBZ	present (3rd-sing)	He likes it
MD	modal verbs	He can go

Nouns

	tag	description	example
non-proper	NN	non-proper, singular or mass	company
	NNS	non-proper, plural	companies
	NNP	proper, singular	Carolina
proper	NNPS	proper, plural	Carolinas

DT (Article)

- Articles (a, the, every, no)
- Indefinite determiners (another, any, some, each)
- That, these, this, those when preceding noun
- All, both when not preceding another determiner or possessive pronoun

65548 the/dt 26970 a/dt 4405 an/dt 3115 this/dt 2117 some/dt 2102 that/dt 1274 all/dt 1085 any/dt 953 no/dt 778 those/dt

Santorini 1990

JJ (Adjectives)

- General adjectives
 - happy person
 - new mail
- Ordinal numbers
 - fourth person

2002 other/jj 1925 new/jj 1563 last/jj 1174 many/jj 1142 such/jj 1058 first/jj 824 major/jj 715 federal/jj 698 next/jj 644 financial/jj
RB (Adverb)

- Most words that end in -ly
- Degree words (quite, too, very)
- Negative markers: not, n't, never

4410 n't/rb 2071 also/rb 1858 not/rb 1109 now/rb 1070 only/rb 1027 as/rb 961 even/rb 839 so/rb 810 about/rb 804 still/rb

IN (preposition, subordinating conjunction)

- All prepositions (except *to*) and subordinating conjunctions
 - He jumped on the table because he was excited

31111 of/in 22967 in/in 11425 for/in 7181 on/in 6684 that/in 6399 at/in 6229 by/in 5940 from/in 5874 with/in 5239 as/in

POS tagging

(Just tags in evidence within the Penn Treebank - more are possible!)

Sequence labeling

$$x = \{x_1, \dots, x_n\}$$

$$y = \{y_1, \ldots, y_n\}$$

 For a set of inputs x with n sequential time steps, one corresponding label y_i for each x_i

Named entity recognition

Natalie Johnson works for UCB

- person
- location
- organization
- (misc)

3 or 4-class:

- person
- location
- organization
- time

7-class:

- money
- percent
- date

POS tagging training data

- Wall Street Journal (~1M tokens, 45 tags, English)
- Universal Dependencies (universal dependency treebanks for many languages; common POS tags for all) https://github.com/UniversalDependencies

Majority class

• Pick the label each word is seen most often with in the training data

fruit	flies	like	а	banana
NN 12	VBZ 7	VB 74	FW 8	NN 3
	NNS 1	VBP 31	SYM 13	
		JJ 28	LS 2	
		IN 533	JJ 2	
			IN 1	
			DT 25820	
			NNP 2	

Sequences

- Models that make independent predictions for elements in a sequence can reason over expressive representations of the input x (including correlations among inputs at different time steps x_i and x_j).
- But they don't capture another important source of information: correlations in the labels y.

Time flies like an arrow

Sequences

Most common tag bigrams in Penn Treebank training

DT	NN	41909
NNP	NNP	37696
NN	IN	35458
IN	DT	35006
JJ	NN	29699
DT	JJ	19166
NN	NN	17484
NN	,	16352
IN	NNP	15940
NN		15548
JJ	NNS	15297
NNS	IN	15146
ТО	VB	13797
NNP	,	13683
IN	NN	11565

х	time	flies	like	an	arrow
У	NN	VBZ	IN	DT	NN

P(y = NN VBZ IN DT NN | x = time flies like an arrow)

Generative vs. Discriminative models

• Generative models specify a joint distribution over the labels and the data. With this you could generate new data

$$P(x, y) = P(y) P(x \mid y)$$

• Discriminative models specify the conditional distribution of the label y given the data x. These models focus on how to discriminate between the classes

$$P(y \mid x)$$

Generative Model P(x, y) = P(x | y) P(y)

Х	time	flies	like	an	arrow
У	NN	VBZ	IN	DT	NN

 $\max_{y} P(x \mid y) P(y)$

How do we parameterize these probabilities when x and y are sequences?

Estimating the seq. Prob.

$$P(y_i, \dots, y_n) = P(y_1)$$

$$\times P(y_2 \mid y_1)$$

$$\times P(y_3 \mid y_1, y_2)$$

$$\dots$$

$$\times P(y_n \mid y_1, \dots, y_{n-1})$$

 Remember: a Markov assumption is an approximation to this exact decomposition (the chain rule of probability)

• We'll make a first-order Markov assumption and calculate the joint probability as the product the individual factors conditioned only on the previous tag.

Hidden Markov Model

 $P(y_{1}, ..., y_{n}) \approx \prod_{i=1}^{n} P(y_{i} | y_{i-1})$ First-order HMM $P(y_{1}, ..., y_{n}) \approx \prod_{i=1}^{n} P(y_{i} | y_{i-2}, y_{i-1})$ Second-order HMM $P(y_{1}, ..., y_{n}) \approx \prod_{i=1}^{n} P(y_{i} | y_{i-3}, y_{i-2}, y_{i-1})$ Third-order HMM

Hidden Markov Model

 $\max_{y} P(x \mid y) P(y)$

y

$$P(x \mid y) = P(x_1, \dots, x_n \mid y_1, \dots, y_n)$$

$$P(x_1,\ldots,x_n \mid y_1,\ldots,y_n) \approx \prod_{i=1}^N P(x_i \mid y_i)$$

Here again we'll make a strong assumption: the probability of the word we see at a given time step is only dependent on its own label, no matter the Markov order used for P(y).

HMM

$$P(x_{1}, ..., x_{n}, y_{1}, ..., y_{n}) \approx \prod_{i=1}^{n} P(y_{i} | y_{i-1}) \prod_{i=1}^{n} P(x_{i} | y_{i})$$

HMM

 $P(x_3 \mid y_3)$

HMM

$P(VB \mid NNP)$

 $P(was \mid VB)$

Parameter estimation

$$P(y_t \mid y_{t-1})$$

$$\frac{c(y_1, y_2)}{c(y_1)}$$

MLE for both is just counting and normalizing

 $P(x_t \mid y_t)$

$$\frac{c(x,y)}{c(y)}$$

Transition probabilities

	NNP	MD	VB	JJ	NN	RB	DT	
< s >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026	
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025	
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041	
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231	
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036	
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068	
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479	
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017	
RB DT	0.0068	0.0102 0.0021	0.1011 0.0002	0.1012 0.2157	0.0120 0.4744	0.0728 0.0102	0.0479	

Figure 10.5 The *A* transition probabilities $P(t_i|t_{i-1})$ computed from the WSJ corpus without smoothing. Rows are labeled with the conditioning event; thus P(VB|MD) is 0.7968.

Emission probabilities

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0.000097	0
NN	0	0.000200	0.000223	0.000006	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

Figure 10.6 Observation likelihoods *B* computed from the WSJ corpus without smoothing.

- **Decoding:** Finding the optimal path for a sequence using transition and emission parameters.
- Greedy decoding: proceed left to right, committing to the best tag for each time step (given the sequence seen so far)

Fruit	flies	like	а	banana
NN	VB	IN	DT	NN

The horse raced past the barn fell

Information later on in the sentence can influence the best tags earlier on.

All paths

Ideally, what we want is to calculate the joint probability of each path and pick the one with the highest probability. But for N time steps and K labels, number of possible paths = K^N

5 word sentence with 45 Penn Treebank tags

 $45^5 = 184,528,125$ different paths

 $45^{20} = 1.16e33$ different paths

Viterbi algorithm

- Basic idea: if an optimal path through a sequence uses label L at time T, then it must have used an optimal path to get to label L at time T
- We can discard all non-optimal paths up to label L at time T

• At each time step t ending in label K, we find the max probability of any path that led to that state

END	
DT	v ₁ (DT)
NNP	v ₁ (NNP)
VB	v1(VB)
NN	v1(NN)
MD	v ₁ (MD)
START	

Janet

What's the HMM probability of ending in Janet = NNP?

 $P(y_t \mid y_{t-1})P(x_t \mid y_t)$ $P(\text{NNP} \mid \text{START})P(Janet \mid \text{NNP})$

END	
DT	v ₁ (DT)
NNP	v ₁ (NNP)
VB	v1(VB)
NN	v ₁ (NN)
MD	v ₁ (MD)
START	

Best path through time step 1 ending in tag y (trivially - best path for all is just START)

Janet

$$v_1(y) = \max_{u \in \mathcal{Y}} \left[P(y_t = y \mid y_{t-1} = u) P(x_t \mid y_t = y) \right]$$

END		
DT	v ₁ (DT)	v ₂ (DT)
NNP	v ₁ (NNP)	v ₂ (NNP)
VB	v1(VB)	v ₂ (VB)
NN	v ₁ (NN)	v ₂ (NN)
MD	v ₁ (MD)	v ₂ (MD)
START		

Janet will

What's the max HMM probability of ending in will = MD?

First, what's the HMM probability of a single path ending in will = MD?

END		
DT	v ₁ (DT)	v ₂ (DT)
NNP	v ₁ (NNP)	v ₂ (NNP)
VB	v1(VB)	v ₂ (VB)
NN	v ₁ (NN)	v ₂ (NN)
MD	v ₁ (MD)	v ₂ (MD)
START		

Janet will

$P(y_1 \mid START)P(x_1 \mid y_1) \times P(y_2 = MD \mid y_1)P(x_2 \mid y_2 = MD)$

END		
DT	v ₁ (DT)	v ₂ (DT)
NNP	v ₁ (NNP)	v ₂ (NNP)
VB	V1(VB)	v2(VB)
NN	v ₁ (NN)	v ₂ (NN)
MD	v ₁ (MD)	v ₂ (MD)
START		

Janet

will

$$\begin{split} P(\text{DT} \mid \text{START}) &\times P(Janet \mid \text{DT}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{DT}) \times P(will \mid y_t = \text{MD}) \\ P(\text{NNP} \mid \text{START}) &\times P(Janet \mid \text{NNP}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{NNP}) \times P(will \mid y_t = \text{MD}) \\ P(\text{VB} \mid \text{START}) &\times P(Janet \mid \text{VB}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{VB}) \times P(will \mid y_t = \text{MD}) \\ P(\text{NN} \mid \text{START}) &\times P(Janet \mid \text{NN}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{NN}) \times P(will \mid y_t = \text{MD}) \\ P(\text{MD} \mid \text{START}) &\times P(Janet \mid \text{MD}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{MD}) \times P(will \mid y_t = \text{MD}) \end{split}$$

Best path through time step 2 ending in tag MD Let's say the best path ending y_2 =MD includes y_1 =NNP, with probability 0.0090.

Under our first-order Markov assumption, *if* $y_2=MD$ is in the best path for the complete sequence, $y_1=NNP$ must be as well. That means we can forget every other path ending in $y_2=MD$ that does not have $y_1=NNP$.

END		
DT	v ₁ (DT)	v ₂ (DT)
NNP	V1(NNP)	v2(NNP)
VB	v ₁ (VB)	v ₂ (VB)
NN	v ₁ (NN)	v ₂ (NN)
MD	v ₁ (MD)	v ₂ (MD)
START		

Janet will

0.0003	$P(DT START) \times P(Janet DT) \times P(y_t = MD P(y_{t-1} = DT) \times P(will y_t = MD)$
0.0090	$P(\text{NNP} \mid \text{START}) \times P(Janet \mid \text{NNP}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{NNP}) \times P(will \mid y_t = \text{MD})$
0.0001	$P(\text{VB} \mid \text{START}) \times P(Janet \mid \text{VB}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{VB}) \times P(will \mid y_t = \text{MD})$
0.0045	$P(\text{NN} \text{START}) \times P(Janet \text{NN}) \times P(y_t = \text{MD} P(y_{t-1} = \text{NN}) \times P(will y_t = \text{MD})$
0.0002	$P(MD START) \times P(Janet MD) \times P(y_t = MD P(y_{t-1} = MD) \times P(will y_t = MD)$

None of the grey out paths could *possibly* be in the final optimal path, so we can forget them going forward.
To calculate this full probability, notice that we can reuse information we've already computed.

 $P(\mathsf{DT} | \mathsf{START}) \times P(Janet | \mathsf{DT}) \times P(y_t = MD | P(y_{t-1} = DT) \times P(will | y_t = MD)$

 $v_1(DT)$

 $P(NNP | START) \times P(Janet | NNP) \times P(y_t = MD | P(y_{t-1} = NNP) \times P(will | y_t = MD)$

 $v_1(NNP)$

 $P(VB | START) \times P(Janet | VB) \times P(y_t = MD | P(y_{t-1} = VB) \times P(will | y_t = MD)$

 $v_1(VB)$

. . .

END		
DT	v ₁ (DT)	v ₂ (DT)
NNP	v1(NNP)	v ₂ (NNP)
VB	v1(VB)	v ₂ (VB)
NN	v ₁ (NN)	v ₂ (NN)
MD	v1(MD)	v ₂ (MD)
START		

Janet will

$$v_t(y) = \max_{u \in \mathcal{Y}} \left[v_{t-1}(u) \times P(y_t = y \mid y_{t-1} = u) P(x_t \mid y_t = y) \right]$$

END		
DT	v₁(DT) ◀	— v ₂ (DT)
NNP	v1(NNP)	V ₂ (NNP)
VB	V1(VB)	/ ^{v₂(VB)}
NN	v1(NN)	¥ v₂(NN)
MD	v ₁ (MD)	۱ _{v2(MD)}
START		

Janet will

Every y at time step t may have a different u at time step t-1 that leads to its max.

Once we've determined that u for each y, we can forget all of the other values of u for that each y, since we know they cannot be on the optimal path for the entire sequence.

$$v_t(y) = \max_{u \in \mathcal{Y}} \left[v_{t-1}(u) \times P(y_t = y \mid y_{t-1} = u) P(x_t \mid y_t = y) \right]$$

END			
DT	v ₁ (DT)	v ₂ (DT)	v ₃ (DT)
NNP	v ₁ (NNP)	v ₂ (NNP)	v ₃ (NNP)
VB	v1(VB)	v ₂ (VB)	v ₃ (VB)
NN	v ₁ (NN)	v ₂ (NN)	v ₃ (NN)
MD	v ₁ (MD)	v ₂ (MD)	v ₃ (MD)
START			

Janet will back

25 paths ending in back = VB

 $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = DT)P(x_2 = will | y_2 = DT)P(y_2 = DT | y_1 = DT)P(x_1 = Janet | y_1 = DT)P(y_1 = DT | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = DT)P(x_2 = will | y_2 = DT)P(y_2 = DT | y_1 = NNP)P(x_1 = Janet | y_1 = NNP)P(y_1 = NNP | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = DT)P(x_2 = will | y_2 = DT)P(y_2 = DT | y_1 = VB)P(x_1 = Janet | y_1 = VB)P(y_1 = VB | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = DT)P(x_2 = will | y_2 = DT)P(y_2 = DT | y_1 = NN)P(x_1 = Janet | y_1 = NN)P(y_1 = NN | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = DT)P(x_2 = will | y_2 = DT)P(y_2 = DT | y_1 = MD)P(x_1 = Janet | y_1 = MD)P(y_1 = MD | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = NNP)P(x_2 = will | y_2 = NNP)P(y_2 = NNP)P(y_1 = DT)P(x_1 = Janet | y_1 = DT)P(y_1 = DT | START)$ $P(x_3 = back \mid y_3 = VB)P(y_3 = VB \mid y_2 = NNP)P(x_2 = will \mid y_2 = NNP)P(y_2 = NNP)P(x_1 = Janet \mid y_1 = NNP)P(y_1 = NNP)P(y_1 = NNP)P(y_2 = NNP)P($ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = NNP)P(x_2 = will | y_2 = NNP)P(y_2 = NNP | y_1 = VB)P(x_1 = Janet | y_1 = VB)P(y_1 = VB | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = NNP)P(x_2 = will | y_2 = NNP)P(y_2 = NNP | y_1 = NN)P(x_1 = Janet | y_1 = NN)P(y_1 = NN | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = NNP)P(x_2 = will | y_2 = NNP)P(y_2 = NNP | y_1 = MD)P(x_1 = Janet | y_1 = MD)P(y_1 = MD | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = VB)P(x_2 = will | y_2 = VB)P(y_2 = VB | y_1 = DT)P(x_1 = Janet | y_1 = DT)P(y_1 = DT | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = VB)P(x_2 = will | y_2 = VB)P(y_2 = VB | y_1 = NNP)P(x_1 = Janet | y_1 = NNP)P(y_1 = NNP | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = VB)P(x_2 = will | y_2 = VB)P(y_2 = VB | y_1 = VB)P(x_1 = Janet | y_1 = VB)P(y_1 = VB | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = VB)P(x_2 = will | y_2 = VB)P(y_2 = VB | y_1 = NN)P(x_1 = Janet | y_1 = NN)P(y_1 = NN | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = VB)P(x_2 = will | y_2 = VB)P(y_2 = VB | y_1 = MD)P(x_1 = Janet | y_1 = MD)P(y_1 = MD | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = NN)P(x_2 = will | y_2 = NN)P(y_2 = NN | y_1 = DT)P(x_1 = Janet | y_1 = DT)P(y_1 = DT | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = NN)P(x_2 = will | y_2 = NN)P(y_2 = NN | y_1 = NNP)P(x_1 = Janet | y_1 = NNP)P(y_1 = NNP | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = NN)P(x_2 = will | y_2 = NN)P(y_2 = NN | y_1 = VB)P(x_1 = Janet | y_1 = VB)P(y_1 = VB | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = NN)P(x_2 = will | y_2 = NN)P(y_2 = NN | y_1 = NN)P(x_1 = Janet | y_1 = NN)P(y_1 = NN | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = NN)P(x_2 = will | y_2 = NN)P(y_2 = NN | y_1 = MD)P(x_1 = Janet | y_1 = MD)P(y_1 = MD | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = MD)P(x_2 = will | y_2 = MD)P(y_2 = MD | y_1 = DT)P(x_1 = Janet | y_1 = DT)P(y_1 = DT | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = MD)P(x_2 = will | y_2 = MD)P(y_2 = MD | y_1 = NNP)P(x_1 = Janet | y_1 = NNP)P(y_1 = NNP | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = MD)P(x_2 = will | y_2 = MD)P(y_2 = MD | y_1 = VB)P(x_1 = Janet | y_1 = VB)P(y_1 = VB | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = MD)P(x_2 = will | y_2 = MD)P(y_2 = MD | y_1 = NN)P(x_1 = Janet | y_1 = NN)P(y_1 = NN | START)$ $P(x_3 = back | y_3 = VB)P(y_3 = VB | y_2 = MD)P(x_2 = will | y_2 = MD)P(y_2 = MD | y_1 = MD)P(x_1 = Janet | y_1 = MD)P(y_1 = MD | START)$

$$\begin{split} P(x_{3} = back \mid y_{3} = VB)P(y_{3} = VB \mid y_{2} = DT)P(x_{2} = will \mid y_{2} = DT)P(y_{2} = DT \mid y_{1} = DT)P(x_{1} = Janet \mid y_{1} = DT)P(y_{1} = DT \mid START) \\ P(x_{3} = back \mid y_{3} = VB)P(y_{3} = VB \mid y_{2} = NNP)P(x_{2} = will \mid y_{2} = NNP)P(y_{2} = NNP \mid y_{1} = DT)P(x_{1} = Janet \mid y_{1} = DT)P(y_{1} = DT \mid START) \\ P(x_{3} = back \mid y_{3} = VB)P(y_{3} = VB \mid y_{2} = MD)P(x_{2} = will \mid y_{2} = MD)P(y_{2} = MD \mid y_{1} = NNP)P(x_{1} = Janet \mid y_{1} = NNP)P(y_{1} = NNP \mid START) \\ P(x_{3} = back \mid y_{3} = VB)P(y_{3} = VB \mid y_{2} = NN)P(x_{2} = will \mid y_{2} = NN)P(y_{2} = NN \mid y_{1} = NN)P(x_{1} = Janet \mid y_{1} = NN)P(y_{1} = NN \mid START) \\ P(x_{3} = back \mid y_{3} = VB)P(y_{3} = VB \mid y_{2} = NN)P(x_{2} = will \mid y_{2} = NN)P(y_{2} = NN \mid y_{1} = NN)P(x_{1} = Janet \mid y_{1} = NN)P(y_{1} = NN \mid START) \\ P(x_{3} = back \mid y_{3} = VB)P(y_{3} = VB \mid y_{2} = VB)P(x_{2} = will \mid y_{2} = VB)P(y_{2} = VB \mid y_{1} = MD)P(x_{1} = Janet \mid y_{1} = MD)P(y_{1} = MD \mid START) \end{split}$$

In calculating the best path ending in x_3 =back and y_3 =VB, we can forget every other path that we've already determined to be suboptimal.

Janet will

$$\begin{split} P(x_{3} = back \mid y_{3} = VB)P(y_{3} = VB \mid y_{2} = DT)P(x_{2} = will \mid y_{2} = DT)P(y_{2} = DT \mid y_{1} = DT)P(x_{1} = Janet \mid y_{1} = DT)P(y_{1} = DT \mid START) \\ P(x_{3} = back \mid y_{3} = VB)P(y_{3} = VB \mid y_{2} = NNP)P(x_{2} = will \mid y_{2} = NNP)P(y_{2} = NNP \mid y_{1} = DT)P(x_{1} = Janet \mid y_{1} = DT)P(y_{1} = DT \mid START) \\ P(x_{3} = back \mid y_{3} = VB)P(y_{3} = VB \mid y_{2} = MD)P(x_{2} = will \mid y_{2} = MD)P(y_{2} = MD \mid y_{1} = NNP)P(x_{1} = Janet \mid y_{1} = NNP)P(y_{1} = NNP \mid START) \\ P(x_{3} = back \mid y_{3} = VB)P(y_{3} = VB \mid y_{2} = NN)P(x_{2} = will \mid y_{2} = NN)P(y_{2} = NN \mid y_{1} = NN)P(x_{1} = Janet \mid y_{1} = NN)P(y_{1} = NN \mid START) \\ P(x_{3} = back \mid y_{3} = VB)P(y_{3} = VB \mid y_{2} = NN)P(x_{2} = will \mid y_{2} = NN)P(y_{2} = NN \mid y_{1} = NN)P(x_{1} = Janet \mid y_{1} = NN)P(y_{1} = NN \mid START) \\ P(x_{3} = back \mid y_{3} = VB)P(y_{3} = VB \mid y_{2} = VB)P(x_{2} = will \mid y_{2} = VB)P(y_{2} = VB \mid y_{1} = MD)P(x_{1} = Janet \mid y_{1} = MD)P(y_{1} = MD \mid START) \end{split}$$

In calculating the best path ending in x_3 =back and y_3 =VB, we can forget every other path that we've already determined to be suboptimal.

Janet will

END			
DT	V1(DT)	v ₂ (DT)	v ₃ (DT)
NNP	V1(NNP)	v2(NNP)	v₃(NNP)
VB	v1(VB)	v ₂ (VB)	v ₃ (VB)
NN	v1(NN)	v ₂ (NN)	/ v₃(NN)
MD	v ₁ (MD)	v ₂ (MD)	v ₃ (MD)
START			
	Janet	will	back

So for every label at every time step, we only need to keep track of which label at the previous time step *t*-1 led to the highest joint probability at that time step *t*.

END					
DT	v ₁ (DT)	v ₂ (DT)	v ₃ (DT)	V4(DT)	v ₅ (DT)
NNP	v ₁ (NNP)	v ₂ (NNP)	v ₃ (NNP)	V4(NNP)	v ₅ (NNP)
VB	V1(VB)	v ₂ (VB)	v ₃ (VB)	v4(MD)	v5(MD)
NN	v ₁ (NN)	v ₂ (NN)	v ₃ (NN)	V4(NN)	v ₅ (NN)
MD	v ₁ (MD)	v ₂ (MD)	v ₃ (MD)	v ₄ (MD)	v ₅ (MD)
START					

Janet will back the bill

END						v _T (END)
DT	v ₁ (DT)	v ₂ (DT)	v ₃ (DT)	V4(DT)	v ₅ (DT)	
NNP	v ₁ (NNP)	v ₂ (NNP)	v ₃ (NNP)	V4(NNP)	v ₅ (NNP)	
VB	V1(VB)	v ₂ (VB)	v ₃ (VB)	V4(MD)	v5(MD)	
NN	v ₁ (NN)	v ₂ (NN)	v ₃ (NN)	V4(NN)	v ₅ (NN)	
MD	v ₁ (MD)	v ₂ (MD)	v ₃ (MD)	v ₄ (MD)	v ₅ (MD)	
START						

Janet will back the bill

v_T(END) encodes the best path through the entire sequence

END						v _T (END)
DT						/
NNP				< ^N		/
VB	₹				Ν,	l
NN		\	/			
MD						
START						

Janet will back the bill

For each timestep t + label, keep track of the max element from t-1 to reconstruct best path function VITERBI(*observations* of len *T*,*state-graph* of len *N*) returns *best-path* create a path probability matrix *viterbi*[*N*+2,*T*] for each state s from 1 to N do ; initialization step *viterbi*[s,1] $\leftarrow a_{0,s} * b_s(o_1)$ *backpointer*[s,1] $\leftarrow 0$ for each time step t from 2 to T do ; recursion step for each state s from 1 to N do $viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$ $backpointer[s,t] \leftarrow \arg_{s',s}^{N} viterbi[s',t-1] * a_{s',s}$ $viterbi[q_F,T] \leftarrow \max_{s=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $backpointer[q_F,T] \leftarrow \arg \max^N viterbi[s,T] * a_{s,q_F}$; termination step return the backtrace path by following backpointers to states back in time from backpointer $[q_F, T]$

Figure 10.8 Viterbi algorithm for finding optimal sequence of tags. Given an observation sequence and an HMM $\lambda = (A, B)$, the algorithm returns the state path through the HMM that assigns maximum likelihood to the observation sequence. Note that states 0 and q_F are non-emitting.

Logistics

- Exam1 is being graded and reviewed.
- No homework this week
 - Homework 4 will be released towards end of the week.
- AP1 is due this Sunday March 3.
- Quiz 4 will be out this Friday afternoon (Due Monday night).
- Next time: Neural Sequence Models